Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1324056, 2023.
Article in English | MEDLINE | ID: mdl-38293620

ABSTRACT

Soil salinization is a significant abiotic factor threatening agricultural production, while the low availability of phosphorus (P) in plants is another worldwide limitation. Approximately 95-99% of the P in soil is unavailable to plants. Phosphate-solubilizing bacteria (PSB) transform insoluble phosphates into soluble forms that plants can utilize. The application of PSB can replace or partially reduce the use of P fertilizers. Therefore, selecting bacteria with high solubilization capacity from extreme environments, such as saline soils, becomes crucial. This study aimed to identify twenty-nine bacterial strains from the rhizosphere of Salicornia fruticosa by sequencing the 16S rDNA gene, evaluate their development in increasing concentrations of NaCl, classify them according to their salinity response, and determine their P solubilization capability. The bacteria were cultivated in nutrient agar medium with NaCl concentrations ranging from 0.5% to 30%. The phosphate solubilization capacity of the bacteria was evaluated in angar and broth National Botanical Research Institute (NBRIP) media supplemented with calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4), and increased with 3% NaCl. All bacterial strains were classified as halotolerant and identified to the genera Bacillus, Enterobacter, Halomonas, Kushneria, Oceanobacillus, Pantoea, Pseudomonas, and Staphylococcus, with only one isolate was not identified. The isolates with the highest ability to solubilize phosphorus from CaHPO4 in the liquid medium were Kushneria sp. (SS102) and Enterobacter sp. (SS186), with 989.53 and 956.37 mg·Kg-1 P content and final pH of 4.1 and 3.9, respectively. For the solubilization of AlPO4, the most effective isolates were Bacillus sp. (SS89) and Oceanobacillus sp. (SS94), which raised soluble P by 61.10 and 45.82 mg·Kg-1 and final pH of 2.9 and 3.6, respectively. These bacteria demonstrated promising results in in vitro P solubilization and can present potential for the development of bioinput. Further analyses, involving different phosphate sources and the composition of produced organic acids, will be conducted to contribute to a comprehensive understanding of their applications in sustainable agriculture.

2.
Oncogene ; 31(42): 4536-49, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22266867

ABSTRACT

Ddx5 and ddx17 are two highly related RNA helicases involved in both transcription and splicing. These proteins coactivate transcription factors involved in cancer such as the estrogen receptor alpha, p53 and beta-catenin. Ddx5 and ddx17 are part of the splicing machinery and can modulate alternative splicing, the main mechanism increasing the proteome diversity. Alternative splicing also has a role in gene expression level regulation when it is coupled to the nonsense-mediated mRNA decay (NMD) pathway. In this work, we report that ddx5 and ddx17 have a dual role in the control of the pro-migratory NFAT5 transcription factor. First, ddx5 and ddx17 act as transcriptional coactivators of NFAT5 and are required for activating NFAT5 target genes involved in tumor cell migration. Second, at the splicing level, ddx5 and ddx17 increase the inclusion of NFAT5 exon 5. As exon 5 contains a pre-mature translation termination codon, its inclusion leads to the regulation of NFAT5 mRNAs by the NMD pathway and to a decrease in NFAT5 protein level. Therefore, we demonstrated for the first time that a transcriptional coregulator can simultaneously regulate the transcriptional activity and alternative splicing of a transcription factor. This dual regulation, where ddx5 and ddx17 enhance the transcriptional activity of NFAT5 although reducing its protein expression level, suggests a critical role for ddx5 and ddx17 in tumor cell migration through the fine regulation of NFAT5 pathway.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Transcriptional Activation , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Movement/genetics , DEAD-box RNA Helicases/metabolism , HeLa Cells , Humans , Immunoprecipitation , MCF-7 Cells , Mice , Myoblasts/cytology , Myoblasts/metabolism , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...