Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070942

ABSTRACT

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Subject(s)
Arginine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/drug effects , Protons , Serotonin/biosynthesis , Cell Line, Tumor , Fenclonine/pharmacology , Gene Expression , Granisetron/pharmacology , Humans , Hydrogen-Ion Concentration , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Protease Inhibitors/pharmacology , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Antagonists/pharmacology , Stomach/cytology , Stomach/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/antagonists & inhibitors , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
2.
Bioorg Med Chem ; 28(1): 115130, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31753804

ABSTRACT

The influenza virus hemagglutinin (HA) mediates membrane fusion after viral entry by endocytosis. The fusion process requires drastic low pH-induced HA refolding and is prevented by arbidol and tert-butylhydroquinone (TBHQ). We here report a class of superior inhibitors with indole-substituted spirothiazolidinone structure. The most active analogue 5f has an EC50 value against influenza A/H3N2 virus of 1 nM and selectivity index of almost 2000. Resistance data and in silico modeling indicate that 5f combines optimized fitting in the TBHQ/arbidol HA binding pocket with a capability for endosomal accumulation. Both criteria appear relevant to achieve superior inhibitors of HA-mediated fusion.


Subject(s)
Antiviral Agents/pharmacology , Hemagglutinin Glycoproteins, Influenza Virus/drug effects , Indoles/pharmacology , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/drug therapy , Spiro Compounds/pharmacology , Thiazolidines/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Indoles/chemistry , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/virology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Protein Refolding/drug effects , Spiro Compounds/chemistry , Structure-Activity Relationship , Thiazolidines/chemistry
3.
J Agric Food Chem ; 66(26): 6762-6771, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29879844

ABSTRACT

Secretion of gastric acid, aimed at preventing bacterial growth and aiding the digestion of foods in the stomach, is chiefly stimulated by dietary intake of protein and amino acids (AAs). However, AAs' key structural determinants responsible for their effects on mechanisms regulating gastric acid secretion (GAS) have not been identified yet. In this study, AAs have been tested in the parietal cell model HGT-1 on GAS and on mRNA expression of genes regulating GAS. AAs' taste intensities from 0 (not bitter at all) to 10 (very bitter) were assessed in a sensory study, in which ARG (l: 6.42 ± 0.41; d: 4.62 ± 0.59) and ILE (l: 4.21 ± 0.43; d: 2.28 ± 0.33) were identified as bitter-tasting candidates in both isomeric forms. Pearson correlation showed that GAS in HGT-1 cells is directly associated with the bitter taste quality ( r: -0.654) in combination with the molecular weight of l-AA ( r: -0.685).


Subject(s)
Amino Acids/metabolism , Gastric Acid/metabolism , Parietal Cells, Gastric/metabolism , Taste , Adult , Amino Acids/chemistry , Cell Line, Tumor , Humans , Molecular Weight , Young Adult
4.
J Agric Food Chem ; 66(27): 7044-7053, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29874909

ABSTRACT

The role of sweet taste in energy intake and satiety regulation is still controversial. Noncaloric artificial sweeteners (NCSs) are thought to help reduce energy intake, although little is known about their impact on the satiating neurotransmitter serotonin (5-HT). In the gastrointestinal (GI) tract, 5-HT regulates gastric acid secretion and gastric motility, both part of the complex network of mechanisms regulating food intake and satiety. This study demonstrated a stimulating impact compared to controls (100%) on 5-HT release in human gastric tumor cells (HGT-1) by the NCSs cyclamate (50 mM, 157% ± 6.3%), acesulfame potassium (Ace K, 50 mM, 197% ± 8.6%), saccharin (50 mM, 147% ± 6.7%), sucralose (50 mM, 194% ± 11%), and neohesperidin dihydrochalcone (NHDC, 1 mM, 201% ± 13%). Although these effects were not associated with the sweet taste intensity of the NCSs tested, involvement of the sweet receptor subunit T1R3 in the NCS-evoked response was demonstrated by mRNA expression of TAS1R3, co-incubation experiments using the T1R3 receptor antagonist lactisole, and a TAS1R3 siRNA knockdown approach. Analysis of the downstream signaling revealed activation of the cAMP/ERK/Ca2+ cascade. Co-treatment experiments with 10 mM glucose enhanced the 5-HT release induced by cyclamate, Ace K, saccharin, and sucralose, thereby supporting the enhancing effect of glucose on a NCS-mediated response. Overall, the results obtained identify NCSs as potent inducers of 5-HT release via T1R3 in human gastric parietal cells in culture and warrant in vivo studies to demonstrate their efficacy.


Subject(s)
Parietal Cells, Gastric/drug effects , Receptors, G-Protein-Coupled/metabolism , Serotonin/metabolism , Sweetening Agents/pharmacology , Benzene Derivatives/pharmacology , Cell Line, Tumor , Chalcones/pharmacology , Cyclamates/pharmacology , Cyclic AMP/metabolism , Gene Expression Regulation/drug effects , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Humans , Parietal Cells, Gastric/metabolism , Parietal Cells, Gastric/pathology , Receptors, G-Protein-Coupled/genetics , Saccharin/pharmacology , Signal Transduction/drug effects , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Thiazines/pharmacology
5.
J Agric Food Chem ; 66(19): 4842-4852, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29665689

ABSTRACT

The noncaloric sweeteners (NCSs) cyclamate (Cycl) and acesulfame K (AceK) are widely added to foods and beverages. Little is known about their impact on gastric acid secretion (GAS), which is stimulated by dietary protein and bitter-tasting compounds. Since Cycl and AceK have a bitter off taste in addition to their sweet taste, we hypothesized they modulate mechanisms of GAS in human gastric parietal cells (HGT-1). HGT-1 cells were exposed to sweet tastants (50 mM of glucose, d-threonine, Cycl, or AceK) and analyzed for their intracellular pH index (IPX), as an indicator of proton secretion by means of a pH-sensitive dye, and for mRNA levels of GAS-associated genes by RT-qPCR. Since the NCSs act via the sweet taste-sensing receptor T1R2/T1R3, mRNA expression of the corresponding genes was analyzed in addition to immunocytochemical localization of the T1R2 and T1R3 receptor proteins. Exposure of HGT-1 cells to AceK or d-threonine increased the IPX to 0.60 ± 0.05 and 0.80 ± 0.04 ( P ≤ 0.05), respectively, thereby indicating a reduced secretion of protons, whereas Cycl demonstrated the opposite effect with IPX values of -0.69 ± 0.08 ( P ≤ 0.05) compared to controls (IPX = 0). Cotreatment with the T1R3-inhibitor lactisole as well as a TAS1R3 siRNA knock-down approach reduced the impact of Cycl, AceK, and d-thr on proton release ( P ≤ 0.05), whereas cotreatment with 10 mM glucose enhanced the NCS-induced effect ( P ≤ 0.05). Overall, we demonstrated Cycl and AceK as modulators of proton secretion in HGT-1 cells and identified T1R3 as a key element in this response.


Subject(s)
Cyclamates/metabolism , Gastric Acid/metabolism , Receptors, G-Protein-Coupled/metabolism , Sweetening Agents/metabolism , Thiazines/metabolism , Cell Line, Tumor , Humans , Receptors, G-Protein-Coupled/genetics
6.
Article in English | MEDLINE | ID: mdl-24046688

ABSTRACT

In the title compound, C16H18ClN3O, the cyclo-hexane ring adopts a distorted chair conformation. In the crystal, pairs of mol-ecules are linked by N-H⋯O hydrogen bonds into inversion dimers, forming R 2 (2)(10) ring motifs. These dimers are connected through C-H⋯N hydrogen bonds into chains along the a axis, forming layers parallel to (101).

SELECTION OF CITATIONS
SEARCH DETAIL
...