Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584589

ABSTRACT

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Subject(s)
Amyloid beta-Protein Precursor , Astrocytes , Gliosis , Animals , Gliosis/metabolism , Gliosis/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice, Knockout
2.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263015

ABSTRACT

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Subject(s)
Glioblastoma , Animals , Humans , Mice , Aquaporin 4 , Astrocytes , Biomarkers , Plectin , Protein Isoforms
3.
J Neurochem ; 168(5): 910-954, 2024 May.
Article in English | MEDLINE | ID: mdl-38183680

ABSTRACT

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Subject(s)
Brain , Energy Metabolism , Energy Metabolism/physiology , Brain/metabolism , Humans , Animals
4.
Signal Transduct Target Ther ; 8(1): 396, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37828019

ABSTRACT

Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.


Subject(s)
Central Nervous System Diseases , Stroke , Humans , Astrocytes/metabolism , Central Nervous System Diseases/genetics , Central Nervous System Diseases/therapy , Central Nervous System Diseases/metabolism , Homeostasis
5.
Cells ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37759529

ABSTRACT

Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.

6.
Cells ; 12(10)2023 05 10.
Article in English | MEDLINE | ID: mdl-37408194

ABSTRACT

A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.


Subject(s)
Depressive Disorder, Major , Ketamine , Mice , Animals , Rats , Ketamine/pharmacology , Astrocytes/metabolism , Depressive Disorder, Major/metabolism , Neurons
7.
Life (Basel) ; 13(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37511873

ABSTRACT

Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.

8.
Neurobiol Dis ; 182: 106132, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37094775

ABSTRACT

Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.


Subject(s)
Adrenergic Agents , Alzheimer Disease , Humans , Astrocytes/metabolism , Lipid Metabolism , Norepinephrine/metabolism , Alzheimer Disease/metabolism , Locus Coeruleus/metabolism , Glycolysis/physiology
9.
Cell Calcium ; 112: 102737, 2023 06.
Article in English | MEDLINE | ID: mdl-37099857

ABSTRACT

Regulated exocytosis, a universal process of eukaryotic cells, involves the merging between the vesicle membrane and the plasma membrane, plays a key role in cell-to-cell communication, particularly in the release of hormones and neurotransmitters. There are a number of barriers a vesicle needs to pass to discharge vesicle content to the extracellular space. At the pre-fusion site vesicles need to be transported to the sites on the plasma membrane where the merger may begin. Classically cytoskeleton was considered an important barrier for vesicle translocation and was thought to be disintegrated to allow vesicle access to the plasma membrane [1]. However, it was considered later that cytoskeletal elements may also play a role at the post-fusion stage, promoting the vesicle merger with the plasma membrane and fusion pore expansion [4,22,23]. In this Special Issue of Cell Calcium entitled "Regulated Exocytosis", the authors address outstanding issues related to vesicle chemical messenger release by regulated exocytosis, including that related to the question whether vesicle content discharge is complete or only partial upon the merging of the vesicle membrane with the plasma membrane triggered by Ca2+. Among processes that limit vesicle discharge at the post-fusion stage is the accumulation of cholesterol in some vesicles [19], a process that has recently been associated with cell aging [20].


Subject(s)
Membrane Fusion , Secretory Vesicles , Secretory Vesicles/metabolism , Cell Membrane/metabolism , Hormones , Exocytosis
13.
Cell Calcium ; 109: 102687, 2023 01.
Article in English | MEDLINE | ID: mdl-36528978

ABSTRACT

Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.


Subject(s)
Lactotrophs , Rats , Animals , Lactotrophs/metabolism , Calcium/metabolism , Prolactin/metabolism , Rats, Wistar , Membrane Fusion/physiology , Peptides/metabolism , Secretory Vesicles/metabolism , Exocytosis/physiology
14.
Essays Biochem ; 67(1): 131-145, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36562155

ABSTRACT

Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Astrocytes/metabolism , Pandemics , RNA, Viral/metabolism , Zika Virus Infection/metabolism , COVID-19/metabolism , SARS-CoV-2
15.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187544

ABSTRACT

We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.

16.
Cell Mol Life Sci ; 79(11): 566, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36283999

ABSTRACT

Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.


Subject(s)
Astrocytes , Encephalitis Viruses, Tick-Borne , Animals , Humans , Astrocytes/metabolism , Wortmannin/metabolism , Autophagy , Sirolimus , Virus Replication
17.
Acta Dermatovenerol Croat ; 30(1): 1-7, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36153713

ABSTRACT

The aim of this study was to quantify the effectiveness of intradermal application of autologous fibroblasts on lean tissue structures. The histological sections of the skin were analysed and evaluated for the expansion potential of autologous fibroblasts in the control skin patch area and the nearby pre-treated skin patch into which we had injected expanded autologous fibroblasts nine month earlier. The results show that the pre-injection of fibroblasts into the dermis leads to a long-term rejuvenation of the skin, as evaluated from the histological appearance and from the significantly increased density of fibroblasts in the pre-injected skin vs. controls, from around 60% to over 80%, determined as the percent of lean tissue by a novel image analysis approach. Interestingly, the rate of the in vitro fibroblast expansion from the pre-injected area of the skin was reduced in comparison with the controls, consistent with the view that fibroblasts exhibit a limited cell-division potential and that fibroblasts from the pre-injected skin already experienced expansion nine month earlier prior to the injection into the skin. We conclude that autologous fibroblast application results in a significant long-term augmentation of the lean tissue elements of the skin.


Subject(s)
Fibroblasts , Skin , Humans , Transplantation, Autologous
18.
Cells ; 11(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35326460

ABSTRACT

G-protein-coupled receptors (GPCRs) represent a family with over 800 members in humans, and one-third of these are targets for approved drugs. A large number of GPCRs have unknown physiologic roles. Here, we investigated GPR27, an orphan GPCR belonging to the family of super conserved receptor expressed in the brain, with unknown functions. Cytosolic levels of L-lactate ([lactate]i), the end product of aerobic glycolysis, were measured with the Laconic fluorescence resonance energy transfer nanosensor. In single 3T3 wild-type (WT) embryonic cells, the application of 8535 (1 µM), a surrogate agonist known to activate GPR27, resulted in an increase in [lactate]i. Similarly, an increase was recorded in primary rat astrocytes, a type of neuroglial cell abundant in the brain, which contain glycogen and express enzymes of aerobic glycolysis. In CRISPR-Cas9 GPR27 knocked out 3T3 cells, the 8535-induced increase in [lactate]i was reduced compared with WT controls. Transfection of the GPR27-carrying plasmid into the 3T3KOGPR27 cells rescued the 8535-induced increase in [lactate]i. These results indicate that stimulation of GPR27 enhances aerobic glycolysis and L-lactate production in 3T3 cells and astrocytes. Interestingly, in the absence of GPR27 in 3T3 cells, resting [lactate]i was increased in comparison with controls, further supporting the view that GPR27 regulates L-lactate homeostasis.


Subject(s)
Astrocytes , Lactic Acid , 3T3 Cells , Animals , Astrocytes/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Mice , Rats , Receptors, G-Protein-Coupled/metabolism
19.
Cell Calcium ; 104: 102570, 2022 06.
Article in English | MEDLINE | ID: mdl-35314381

ABSTRACT

Interactive mechanical forces between pairs of individual SNARE proteins synaptobrevin 2 (Sb2) and syntaxin 1A (Sx1A) may be sufficient to mediate vesicle docking. This notion, based on force spectroscopy single molecule measurements probing recombinant Sx1A an Sb2 in silico, questioned a predominant view of docking via the ternary SNARE complex formation, which includes an assembly of the intermediate cis binary complex between Sx1A and SNAP25 on the plasma membrane to engage Sb2 on the vesicle. However, whether a trans binary Sx1A-Sb2 complex alone could mediate vesicle docking in a cellular environment remains unclear. To address this issue, we used atomic force microscopy (AFM) in the force spectroscopy mode combined with fluorescence imaging. Using AFM tips functionalized with the full Sx1A cytosolic domain, we probed native Sb2 studding the membrane of secretory vesicles docked at the plasma membrane patches, referred to as "inside-out lawns", identified based on fluorescence stains and prepared from primary culture of lactotrophs. We recorded single molecule Sx1A-Sb2 mechanical interactions and obtained measurements of force (∼183 pN) and extension (∼21.6 nm) necessary to take apart Sx1A-Sb2 binding interactions formed at tip-vesicle contact. Measured interactive force between a single pair of Sx1A-Sb2 molecules is sufficient to hold a single secretory vesicle docked at the plasma membrane within distances up to that of the measured extension. This finding further advances a notion that native vesicle docking can be mediated by a single trans binary Sx1A-Sb2 complex in the absence of SNAP25.


Subject(s)
Secretory Vesicles , Vesicle-Associated Membrane Protein 2 , Microscopy, Atomic Force , Protein Binding , SNARE Proteins/metabolism , Secretory Vesicles/metabolism , Syntaxin 1/chemistry , Syntaxin 1/metabolism , Vesicle-Associated Membrane Protein 2/chemistry , Vesicle-Associated Membrane Protein 2/metabolism
20.
Biol Direct ; 17(1): 5, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197090

ABSTRACT

In 2009, new EU legislation regulating advanced therapy medicinal products (ATMPs), consisting of gene therapy, tissue engineering and cell-based medicines, was introduced. Although less than 20 ATMPs were authorized since that time, the awarding of the Nobel Prize for Physiology or Medicine in 2018 revived interest in developing new cancer immunotherapies involving significant manipulation of the patient's own immune cells, including lymphocytes and dendritic cells. The lymphocytes are mainly thought to directly affect tumour cells, dendritic cells are involved in indirect mechanisms by antigen presentation to other leukocytes orchestrating the immune response. It is the latter cells that are the focus of this brief review. Based on the recent results of our study treating patients with castration-resistant prostate cancer (CRPC) with an immunohybridoma cell construct (termed aHyC), produced by electrofusion of autologous tumour and dendritic cells, we compare their effectiveness with a matched documented control group of patients. The results revealed that cancer-specific survival and the time to next in-line therapy (TTNT) were both significantly prolonged versus controls. When patients were observed for longer periods since the time of diagnosis of CRPC, 20% of patients had not yet progressed to the next in-line therapy even though the time under observation was ~ 80 months. Interestingly, analysis of survival of patients revealed that the effectiveness of treatment was independent of the number of cells in the vaccine used for treatment. It is concluded that autologous dendritic cell-based immunotherapy is a new possibility to treat not only CRPC but also other solid tumours.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Vaccines , Cell Count , Dendritic Cells/pathology , Humans , Immunotherapy/methods , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...