Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 616(7955): 38-40, 2023 04.
Article in English | MEDLINE | ID: mdl-37020003
2.
Ecol Lett ; 23(12): 1827-1837, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32975023

ABSTRACT

Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the 'Divergence Problem' in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long-distance effects of anthropogenic emissions on the functioning and productivity of Siberia's taiga. Downwind from the world's most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how 'Arctic Dimming' can explain the circumpolar 'Divergence Problem', and discuss implications on the terrestrial carbon cycle.


Subject(s)
Ecosystem , Taiga , Arctic Regions , Forests , Trees
3.
Proc Natl Acad Sci U S A ; 116(12): 5393-5398, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833383

ABSTRACT

Moisture delivery in California is largely regulated by the strength and position of the North Pacific jet stream (NPJ), winter high-altitude winds that influence regional hydroclimate and forest fire during the following warm season. We use climate model simulations and paleoclimate data to reconstruct winter NPJ characteristics back to 1571 CE to identify the influence of NPJ behavior on moisture and forest fire extremes in California before and during the more recent period of fire suppression. Maximum zonal NPJ velocity is lower and northward shifted and has a larger latitudinal spread during presuppression dry and high-fire extremes. Conversely, maximum zonal NPJ is higher and southward shifted, with narrower latitudinal spread during wet and low-fire extremes. These NPJ, precipitation, and fire associations hold across pre-20th-century socioecological fire regimes, including Native American burning, postcontact disruption and native population decline, and intensification of forest use during the later 19th century. Precipitation extremes and NPJ behavior remain linked in the 20th and 21st centuries, but fire extremes become uncoupled due to fire suppression after 1900. Simulated future conditions in California include more wet-season moisture as rain (and less as snow), a longer fire season, and higher temperatures, leading to drier fire-season conditions independent of 21st-century precipitation changes. Assuming continuation of current fire management practices, thermodynamic warming is expected to override the dynamical influence of the NPJ on climate-fire relationships controlling fire extremes in California. Recent widespread fires in California in association with wet extremes may be early evidence of this change.

4.
Ann N Y Acad Sci ; 1436(1): 54-69, 2019 01.
Article in English | MEDLINE | ID: mdl-29863800

ABSTRACT

Regional climate modeling bridges the gap between the coarse resolution of current global climate models and the regional-to-local scales, where the impacts of climate change are of primary interest. Here, we present a review of the added value of the regional climate modeling approach within the scope of paleoclimate research and discuss the current major challenges and perspectives. Two time periods serve as an example: the Holocene, including the Last Millennium, and the Last Glacial Maximum. Reviewing the existing literature reveals the benefits of regional paleo climate modeling, particularly over areas with complex terrain. However, this depends largely on the variable of interest, as the added value of regional modeling arises from a more realistic representation of physical processes and climate feedbacks compared to global climate models, and this affects different climate variables in various ways. In particular, hydrological processes have been shown to be better represented in regional models, and they can deliver more realistic meteorological data to drive ice sheet and glacier modeling. Thus, regional climate models provide a clear benefit to answer fundamental paleoclimate research questions and may be key to advance a meaningful joint interpretation of climate model and proxy data.


Subject(s)
Climate Change , Ecosystem , Models, Theoretical , Temperature
5.
Hum Ecol Interdiscip J ; 46(3): 363-379, 2018.
Article in English | MEDLINE | ID: mdl-29997409

ABSTRACT

This article analyses high-quality hydroclimate proxy records and spatial reconstructions from the Central and Eastern Mediterranean and compares them with two Earth System Model simulations (CCSM4, MPI-ESM-P) for the Crusader period in the Levant (1095-1290 CE), the Mamluk regime in Transjordan (1260-1516 CE) and the Ottoman crisis and Celâlî Rebellion (1580-1610 CE). During the three time intervals, environmental and climatic stress tested the resilience of complex societies. We find that the multidecadal precipitation and drought variations in the Central and Eastern Mediterranean cannot be explained by external forcings (solar variations, tropical volcanism); rather they were driven by internal climate dynamics. Our research emphasises the challenges, opportunities and limitations of linking proxy records, palaeoreconstructions and model simulations to better understand how climate can affect human history.

6.
Sci Rep ; 8(1): 7702, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769593

ABSTRACT

East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1-2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900-1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.

7.
Nature ; 532(7597): 94-8, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27078569

ABSTRACT

Accurate modelling and prediction of the local to continental-scale hydroclimate response to global warming is essential given the strong impact of hydroclimate on ecosystem functioning, crop yields, water resources, and economic security. However, uncertainty in hydroclimate projections remains large, in part due to the short length of instrumental measurements available with which to assess climate models. Here we present a spatial reconstruction of hydroclimate variability over the past twelve centuries across the Northern Hemisphere derived from a network of 196 at least millennium-long proxy records. We use this reconstruction to place recent hydrological changes and future precipitation scenarios in a long-term context of spatially resolved and temporally persistent hydroclimate patterns. We find a larger percentage of land area with relatively wetter conditions in the ninth to eleventh and the twentieth centuries, whereas drier conditions are more widespread between the twelfth and nineteenth centuries. Our reconstruction reveals that prominent seesaw patterns of alternating moisture regimes observed in instrumental data across the Mediterranean, western USA, and China have operated consistently over the past twelve centuries. Using an updated compilation of 128 temperature proxy records, we assess the relationship between the reconstructed centennial-scale Northern Hemisphere hydroclimate and temperature variability. Even though dry and wet conditions occurred over extensive areas under both warm and cold climate regimes, a statistically significant co-variability of hydroclimate and temperature is evident for particular regions. We compare the reconstructed hydroclimate anomalies with coupled atmosphere-ocean general circulation model simulations and find reasonable agreement during pre-industrial times. However, the intensification of the twentieth-century-mean hydroclimate anomalies in the simulations, as compared to previous centuries, is not supported by our new multi-proxy reconstruction. This finding suggests that much work remains before we can model hydroclimate variability accurately, and highlights the importance of using palaeoclimate data to place recent and predicted hydroclimate changes in a millennium-long context.


Subject(s)
Climate Change/statistics & numerical data , Climate , Rain , Atmosphere , China , Ecosystem , Geographic Mapping , Geologic Sediments/chemistry , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Medieval , Hydrology , Ice/analysis , Mediterranean Region , Models, Theoretical , Soil/chemistry , Spatio-Temporal Analysis , Temperature , Trees/anatomy & histology , Trees/growth & development , Uncertainty , United States
8.
Nat Commun ; 6: 7849, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26220773

ABSTRACT

While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

9.
Ambio ; 43(1): 37-48, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24414803

ABSTRACT

We present a multi-model ensemble study for the Baltic Sea, and investigate the combined impact of changing climate, external nutrient supply, and fisheries on the marine ecosystem. The applied regional climate system model contains state-of-the-art component models for the atmosphere, sea ice, ocean, land surface, terrestrial and marine biogeochemistry, and marine food-web. Time-dependent scenario simulations for the period 1960-2100 are performed and uncertainties of future projections are estimated. In addition, reconstructions since 1850 are carried out to evaluate the models sensitivity to external stressors on long time scales. Information from scenario simulations are used to support decision-makers and stakeholders and to raise awareness of climate change, environmental problems, and possible abatement strategies among the general public using geovisualization. It is concluded that the study results are relevant for the Baltic Sea Action Plan of the Helsinki Commission.


Subject(s)
Climate Change , Ecosystem , Baltic States , Oceans and Seas
10.
Ambio ; 41(6): 534-48, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926877

ABSTRACT

A comprehensive reconstruction of the Baltic Sea state from 1850 to 2006 is presented: driving forces are reconstructed and the evolution of the hydrography and biogeochemical cycles is simulated using the model BALTSEM. Driven by high resolution atmospheric forcing fields (HiResAFF), BALTSEM reproduces dynamics of salinity, temperature, and maximum ice extent. Nutrient loads have been increasing with a noteworthy acceleration from the 1950s until peak values around 1980 followed by a decrease continuing up to present. BALTSEM shows a delayed response to the massive load increase with most eutrophic conditions occurring only at the end of the simulation. This is accompanied by an intensification of the pelagic cycling driven by a shift from spring to summer primary production. The simulation indicates that no improvement in water quality of the Baltic Sea compared to its present state can be expected from the decrease in nutrient loads in recent decades.


Subject(s)
Eutrophication , Baltic States , History, 19th Century , History, 20th Century , History, 21st Century , Oceans and Seas
12.
Science ; 306(5696): 679-82, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15459344

ABSTRACT

Empirical reconstructions of the Northern Hemisphere (NH) temperature in the past millennium based on multiproxy records depict small-amplitude variations followed by a clear warming trend in the past two centuries. We use a coupled atmosphere-ocean model simulation of the past 1000 years as a surrogate climate to test the skill of these methods, particularly at multidecadal and centennial time scales. Idealized proxy records are represented by simulated grid-point temperature, degraded with statistical noise. The centennial variability of the NH temperature is underestimated by the regression-based methods applied here, suggesting that past variations may have been at least a factor of 2 larger than indicated by empirical reconstructions.

13.
Nature ; 427(6969): 69-72, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14702086

ABSTRACT

Determining the factors that control food web interactions is a key issue in ecology. The empirical relationship between nutrient loading (total phosphorus) and phytoplankton standing stock (chlorophyll a) in lakes was described about 30 years ago and is central for managing surface water quality. The efficiency with which biomass and energy are transferred through the food web and sustain the production of higher trophic levels (such as fish) declines with nutrient loading and system productivity, but the underlying mechanisms are poorly understood. Here we show that in seston (fine particles in water) during summer, specific omega3-polyunsaturated fatty acids (omega3-PUFAs), which are important for zooplankton, are significantly correlated to the trophic status of the lake. The omega3-PUFAs octadecatetraenoic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid, but not alpha-linolenic acid, decrease on a double-logarithmic scale with increasing total phosphorus. By combining the empirical relationship between EPA-to-carbon content and total phosphorus with functional models relating EPA-to-carbon content to the growth and egg production of daphnids, we predict secondary production for this key consumer. Thus, the decreasing efficiency in energy transfer with increasing lake productivity can be explained by differences in omega3-PUFA-associated food quality at the plant-animal interface.


Subject(s)
Fatty Acids, Unsaturated/analysis , Food Chain , Fresh Water/chemistry , Zooplankton/metabolism , Animals , Biomass , Carbon/metabolism , Chlorophyll/metabolism , Chlorophyll A , Daphnia/growth & development , Daphnia/physiology , Food , Ovum/physiology , Particle Size , Phosphorus/metabolism , Phytoplankton/metabolism , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...