Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
IEEE Trans Biomed Eng ; 70(12): 3461-3468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37352086

ABSTRACT

OBJECTIVE: The study describes the development and testing of a dry surface stimulation flexible electrode (herein referred to as Flexatrode), a low-cost, flexible, and scalable elastomeric nanocomposite using carbon black (CB) and polydimethylsiloxane (PDMS). METHODS: Flexatrodes composed of CB and PDMS were developed and tested for mechanical and functional stability up to 7 days. Uniform CB distribution was achieved by optimizing the dispersion process using toluene and methyl-terminated PDMS. Electromechanical testing in the through thickness directions over a long-term duration demonstrated stability of Flexatrode. Thermal stability of Flexatrode for up to a week was tested and validated, thus mitigating concerns of heat generation and deleterious skin reactions such as vasodilation or erythema. RESULTS: 25 wt.% CB was determined to be the optimal concentration. Electrical and thermal stability were demonstrated in the through thickness direction. CONCLUSION: Flexatrode provides stable electrical properties combined with high flexibility and elasticity. Electrotherapy treated chronic wounds were 81.9% smaller than baseline at day 10. Wounds that received an inactive device (device without any electrical stimulation) were 58.1% smaller than baseline and wounds that received standard of care treatment were 62.2% smaller than baseline. SIGNIFICANCE: The increasing need for wearable bioelectronics requiring long-term monitoring/treatment has highlighted the limitations of sustained use of gel-based electrodes. These can include skin irritation, bacterial overgrowth at the electrode site, gel dehydration over time, and signal degradation due to eccrine sweat formation. Flexatrode provides stable performance in a nanocomposite with scalable fabrication, thus providing a promising platform technology for wearable bioelectronics.


Subject(s)
Nanocomposites , Electric Conductivity , Elasticity , Electrodes
2.
Micromachines (Basel) ; 13(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36144061

ABSTRACT

We report a low-temperature inkjet printing and plasma treatment method using silver nitrate ink that allows the fabrication of conductive silver traces on poly(vinyl alcohol) (PVA) film with good fidelity and without degrading the polymer substrate. In doing so, we also identify a critical salt loading in the film that is necessary to prevent the polymer from reacting with the silver nitrate-based ink, which improves the resolution of the silver trace while simultaneously lowering its sheet resistance. Silver lines printed on PVA film using this method have sheet resistances of around 0.2 Ω/□ under wet/dry and stretched/unstretched conditions, while PVA films without prior treatment double in sheet resistance upon wetting or stretching the substrate. This low resistance of printed lines on salt-treated films can be preserved under multiple bending cycles of 0-90° and stretching cycles of 0-6% strain if the polymer is prestretched prior to inkjet printing.

3.
IEEE J Transl Eng Health Med ; 10: 4900909, 2022.
Article in English | MEDLINE | ID: mdl-35685338

ABSTRACT

Objective: Wound dressings that create and maintain a moist environment provide the optimal conditions for wound healing by increasing the rate of epithelialization and angiogenesis. However, current wound dressings require periodic removal which exposes the wound to the surrounding environment, thereby increasing the likelihood for infection and drying out the wound itself. There remains an unmet medical need for the development of an absorbent, flexible, and transparent wound dressing that can conform to the irregular geometry of the wound for a long-term duration. Herein, we report the development of AFTIDerm, an Absorbent, Flexible, Transparent, and Inexpensive moisture-management wound dressing using Polyvinyl alcohol (PVA) as the host material. Methods:AFTIDerm substrates of varying glycerol concentrations (1 wt%, 3 wt%, 5 wt%, 7 wt%, and 10 wt%) were fabricated and tested. The mechanical, absorption, and biological properties of AFTIDerm were evaluated. Results: We found that 5% glycerol served as the optimal concentration for AFTIDerm. The biocompatibility, absorptive capabilities, and scalability render PVA/glycerol an ideal material composition for wound dressings. Benchtop experimentation and pre-clinical testing demonstrate AFTIDerm as a platform for use in wound dressings. Discussion/Conclusion: The development of AFTIDerm broadens the translational utility of this materials platform not only as a material for wound dressings to minimize dressing changes in low to moderate exudate environments, but also as a potential substrate material for smart bandages. Clinical and Translational Impact Statement- AFTI Derm, an absorbent, flexible, and transparent wound dressing, maintains the moist environment required for healing while enabling monitoring of healing without removal and disruption to the wound bed.


Subject(s)
Bandages , Glycerol , Exudates and Transudates , Occlusive Dressings , Polyvinyl Alcohol , Wound Healing
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7011-7015, 2021 11.
Article in English | MEDLINE | ID: mdl-34892717

ABSTRACT

Rising pressure within a vascular graft can signal impending failure caused by stenosis or thrombosis, and early detection can improve surgical salvage outcomes. To enable regular graft pressure monitoring, we developed a thin flexible pulsation sensor (FPS) with wireless data readout. A conductive polymer sensing layer is attached to a flexible circuit board and then encapsulated by polydimethylsiloxane (PDMS) for biocompatibility. Due to the FPS' outstanding flexibility in comparison to natural arteries, veins, and synthetic vascular grafts, it can be wrapped around target conduits to monitor blood pressure for short-term surgical and long-term implantation purposes. In this study, we analyze the power spectrum of the FPS data to determine the ideal bandwidth of the wireless FPS device to preserve heart rate and hemodynamic waveforms while rejecting noise. The strain response of FPS wrapped around silicone tube, vascular graft and artery was simulated using COMSOL®, showing a linear relationship between pressure and FPS strain. The optimized bandpass filter of 0.2-10 Hz was simulated and implemented on a flexible polyimide circuit board. The circuit board also included a low- power microcontroller for data conversion and transmission via simple 4-MHz on-off keying. The performance of the prototype was evaluated by recording wireless data from a vascular phantom under different pressure and flow settings. The results indicate that the peak-to-peak FPS voltage responds linearly to RMS blood pressure and systolic-diastolic pressure.Clinical Relevance- Early detection of a failing vascular graft could leverage sensors for near real-time monitoring. The presented wireless flexible sensor measures and transmits vessel distension data as a proxy for internal lumen pressure.


Subject(s)
Dimethylpolysiloxanes , Prostheses and Implants , Blood Pressure , Monitoring, Physiologic , Phantoms, Imaging
5.
IEEE Trans Biomed Circuits Syst ; 13(6): 1451-1461, 2019 12.
Article in English | MEDLINE | ID: mdl-31603827

ABSTRACT

Regular monitoring of blood flow and pressure in vascular reconstructions or grafts would provide early warning of graft failure and improve salvage procedures. Based on biocompatible materials, we have developed a new type of thin, flexible pulsation sensor (FPS) which is wrapped around a graft to monitor blood pressure and flow. The FPS uses carbon black (CB) nanoparticles dispersed in polydimethylsiloxane (PDMS) as a piezoresistive sensor layer, which was encapsulated within structural PDMS layers and connected to stainless steel interconnect leads. Because the FPS is more flexible than natural arteries, veins, and synthetic vascular grafts, it can be wrapped around target conduits at the time of surgery and remain implanted for long-term monitoring. In this study, we analyze strain transduction from a blood vessel and characterize the electrical and mechanical response of CB-PDMS from 0-50% strain. An optimum concentration of 14% CB-PDMS was used to fabricate 300-µm thick FPS devices with elastic modulus under 500 kPa, strain range of over 50%, and gauge factor greater than 5. Sensors were tested in vitro on vascular grafts with flows of 0-1,100 mL/min. In vitro testing showed linear output to pulsatile flows and pressures. Cyclic testing demonstrated robust operation over hundreds of cardiac cycles, with ±2.6 mmHg variation in pressure readout. CB-PDMS composite material showed excellent potential in biologic strain sensing applications where a flexible sensor with large maximum strain range is needed.


Subject(s)
Blood Pressure Determination/instrumentation , Dimethylpolysiloxanes/chemistry , Soot/chemistry , Blood Volume Determination/instrumentation , Electrodes, Implanted , Humans , Nanoparticles , Vascular Grafting
6.
NPJ Digit Med ; 2: 71, 2019.
Article in English | MEDLINE | ID: mdl-31372506

ABSTRACT

The convergence of semiconductor technology, physiology, and predictive health analytics from wearable devices has advanced its clinical and translational utility for sports. The detection and subsequent application of metrics pertinent to and indicative of the physical performance, physiological status, biochemical composition, and mental alertness of the athlete has been shown to reduce the risk of injuries and improve performance and has enabled the development of athlete-centered protocols and treatment plans by team physicians and trainers. Our discussions in this review include commercially available devices, as well as those described in scientific literature to provide an understanding of wearable sensors for sports medicine. The primary objective of this paper is to provide a comprehensive review of the applications of wearable technology for assessing the biomechanical and physiological parameters of the athlete. A secondary objective of this paper is to identify collaborative research opportunities among academic research groups, sports medicine health clinics, and sports team performance programs to further the utility of this technology to assist in the return-to-play for athletes across various sporting domains. A companion paper discusses the use of wearables to monitor the biochemical profile and mental acuity of the athlete.

7.
NPJ Digit Med ; 2: 72, 2019.
Article in English | MEDLINE | ID: mdl-31341957

ABSTRACT

Athletes are continually seeking new technologies and therapies to gain a competitive edge to maximize their health and performance. Athletes have gravitated toward the use of wearable sensors to monitor their training and recovery. Wearable technologies currently utilized by sports teams monitor both the internal and external workload of athletes. However, there remains an unmet medical need by the sports community to gain further insight into the internal workload of the athlete to tailor recovery protocols to each athlete. The ability to monitor biomarkers from saliva or sweat in a noninvasive and continuous manner remain the next technological gap for sports medical personnel to tailor hydration and recovery protocols per the athlete. The emergence of flexible and stretchable electronics coupled with the ability to quantify biochemical analytes and physiological parameters have enabled the detection of key markers indicative of performance and stress, as reviewed in this paper.

8.
Talanta ; 195: 46-54, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30625570

ABSTRACT

The analysis of protein-nucleic acid interactions is essential for biophysics related research. However, simple, rapid, and accurate methods for quantitative analysis of biomolecular interactions are lacking. We herein establish an electrochemical biosensor approach for protein-nucleic acid binding analysis. Nanoparticle based sensors are fabricated by highly-controlled inkjet printing followed by plasma conversion. A novel bioconjugation method is demonstrated as a simple and rapid approach for protein-based biosensor fabrication. As a proof of concept, we analyzed the binding interaction between unwinding protein 1 (UP1) and SL3ESS3 RNA, confirming the accuracy of this nanoparticle based electrochemical biosensor approach with traditional biophysical methods. We further accurately profiled and differentiated a unique binding interaction pattern of multiple G-tract nucleic acid sequences with heterogeneous nuclear ribonucleoprotein H1. Our study provides insights into a potentially universal platform for in vitro biomolecule interaction analysis using a nanoparticle based electrochemical biosensor approach.


Subject(s)
Biosensing Techniques , DNA/chemistry , Gold/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Metal Nanoparticles/chemistry , RNA, Spliced Leader/chemistry , Electrochemical Techniques
9.
Adv Mater Technol ; 4(12)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-35178467

ABSTRACT

Here, an environmentally-friendly and scalable process is reported to synthesize reduced graphene oxide (RGO) thin films for printed electronics applications. The films are produced by inkjet printing GO flakes dispersed binder-free in aqueous solutions followed by treatment with a nonthermal, radio-frequency (RF) plasma containing only argon (Ar) gas. The plasma process is found to heat the substrate to temperatures no greater than 138 °C, enabling RGO to be printed directly on a wide range of temperature-sensitive substrate materials including photo paper. Unlike other low-temperature methods such as electrochemical reduction, plasma reduction is friendly to moisture absorbent materials. Moreover, the plasma treatment can be performed on nonconducting substrates, eliminating the need for film transfer. From an applications perspective, the printed, plasma-reduced RGO exhibits excellent electrical, mechanical, and electrochemical properties. As a technology demonstrator, the working electrodes of hydrogen peroxide (H2O2) sensors fabricated from plasma-reduced GO show a sensitivity of 277 ± 80 µA mm-1 cm-2, which is comparable to RGO working electrodes made by electrochemical reduction.

10.
IEEE Sens Lett ; 3(2)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-32083240

ABSTRACT

Inkjet printing has been identified as a cost-effective method to fabricate sensors on polymeric substrates. However, substrate materials suitable for printing are limited by the annealing temperature required by conventional inks. In this article, we describe the fabrication of an inkjet-printed thermistor on polyethylene and cellophane substrates that are not thermally compatible with the conventional inkjet printing processes. Fabrication on these substrates is made possible by a novel plasma-based postprint treatment step that limits the substrate temperature to <50 °C. The sensors exhibited a temperature sensitivity of 0.25 Ω°C-1 that was independent of substrate material. The utility of the fabrication process was demonstrated by fabricating thermistors for common indoor and outdoor applications.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2989-2992, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441026

ABSTRACT

Real-time monitoring of arteriovenous graft blood flow would provide early warning of graft failure to permit interventions such as angioplasty or graft replacement to avoid catastrophic failure. We have developed a new type of flexible pulsation sensor (FPS) consisting of a 3D printed elastic cuff wrapped around a graft and thus not in contact with blood. The FPS uses multi-walled carbon nanotubes (MWCNTs) dispersed in polydimethylsiloxane (PDMS) as a piezoresistive sensor layer, which is embedded within structural thixotropic PDMS. These materials were specifically developed to enable sensor additive manufacturing via 3D Bio-plotting, and the resulting strain sensor is more compliant and has a wider maximum strain range than graft materials. Here, we analyze the strain transduction mechanics on a vascular graft and describe the memristive properties of MWCNT-PDMS composites, which may be mitigated using AC biasing. In vitro testing of the FPS on a vascular graft phantom showed a robust, linear sensor output to pulsatile flows (170-650 mL/min) and pressures (62-175 mmHg). The FPS showed an RMS error when measuring pressure and flow of 7.7 mmHg and 29.3 mL/min, with a mean measurement error of 6.5% (pressure) and 8.0% (flow).


Subject(s)
Printing, Three-Dimensional , Dimethylpolysiloxanes , Nanotubes, Carbon , Pressure
12.
ACS Appl Mater Interfaces ; 10(50): 43936-43945, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30462491

ABSTRACT

Synthesis of large-area hexagonal boron nitride (h-BN) films for two-dimensional (2D) electronic applications typically requires high temperatures (∼1000 °C) and catalytic metal substrates which necessitate transfer. Here, analogous to plasma-enhanced chemical vapor deposition, a nonthermal plasma is employed to create energetic and chemically reactive states such as atomic hydrogen and convert a molecular precursor film to h-BN at temperatures as low as 500 °C directly on metal-free substrates-a process we term plasma-enhanced chemical film conversion (PECFC). Films containing ammonia borane as a precursor are prepared by a variety of solution processing methods including spray deposition, spin coating, and inkjet printing and reacted in a cold-wall reactor with a planar dielectric barrier discharge operated at atmospheric pressure in a background of argon or a mixture of argon and hydrogen. Systematic characterization of the converted h-BN films by micro-Raman spectroscopy shows that the minimum temperature for nucleation on silicon-based substrates can be decreased from 800 to 500 °C by the addition of a plasma. Furthermore, the crystalline domain size, as reflected by the full width at half-maximum, increased by more than 3 times. To demonstrate the potential of the h-BN films as a gate dielectric in 2D electronic devices, molybdenum disulfide field effect transistors were fabricated, and the field effect mobility was found to be improved by up to 4 times over silicon dioxide. Overall, PECFC allows h-BN films to be grown at lower temperatures and with improved crystallinity than CVD, directly on substrates suitable for electronic device fabrication.

13.
ACS Appl Mater Interfaces ; 9(49): 43090-43097, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29115818

ABSTRACT

Beta gallium oxide (ß-Ga2O3) is an emerging ultrawide band gap (4.5 eV-4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. ß-Ga2O3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal ß-Ga2O3 nanomechanical resonators using ß-Ga2O3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating ß-Ga2O3 circular drumhead structures, we demonstrate multimode nanoresonators up to the sixth mode in high and very high frequency (HF/VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Young's modulus of EY = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ∼40% upshift in frequency and ∼90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable ß-Ga2O3 electronic, optoelectronic, and physical sensing devices.

14.
Nano Lett ; 17(8): 4568-4575, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28628325

ABSTRACT

Emerging atomic layer semiconducting crystals such as molybdenum disulfide (MoS2) are promising candidates for flexible electronics and strain-tunable devices due to their ultrahigh strain limits (up to ∼20-30%) and strain-tunable bandgaps. However, high strain levels, controllable isotropic and anisotropic biaxial strains in single- and few-layer MoS2 on device-oriented flexible substrates permitting convenient and fast strain tuning, remain unexplored. Here, we demonstrate a "blown-bubble" bulge technique for efficiently applying large strains to atomic layer MoS2 devices on a flexible substrate. As the strain increases via bulging, we achieve continuous tuning of Raman and photoluminescence (PL) signatures in single- and few-layer MoS2, including splitting of Raman peaks. With proper clamping of the MoS2 crystals, we apply up to ∼9.4% strain in the flexible substrate, which causes a doubly clamped single-layer MoS2 to fracture at 2.2-2.6% strain measured by PL and 2.9-3.5% strain measured by Raman spectroscopy. This study opens new pathways for exploiting 2D semiconductors on stretchable substrates for flexible electronics, mechanical transducers, tunable optoelectronics, and biomedical transducers on curved and bulging surfaces.


Subject(s)
Disulfides/chemistry , Molybdenum/chemistry , Nanostructures/chemistry , Luminescence , Particle Size , Physical Phenomena , Semiconductors , Spectrum Analysis, Raman , Transducers
15.
ACS Macro Lett ; 6(3): 194-199, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-35650912

ABSTRACT

We report a microplasma-based process to fabricate stretchable, electrically conductive metal patterns from metal-cation containing polymers. The technique is compatible with prestraining strategies, allowing films to remain conductive with almost no drop in resistance up to 35% strain. We show that the stretchability of the films is related to uniform strain delocalization which is made possible by how the metallized layer is formed in situ, growing from within the polymer matrix rather than by deposition, to create a quasi-monolithic structure without a well-defined metal-polymer interfacial boundary.

16.
ACS Appl Mater Interfaces ; 6(24): 22695-700, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25412118

ABSTRACT

A simple and robust alternative for fabricating stimuli-responsive 2D self-folding films was introduced. The approach combines metal-sputtering, layer-by-layer assembly of polyelectrolytes, and transfer-printing of the bilayer film onto a substrate coated with a sacrificial layer. With this technique, self-folding bilayer films can be fabricated without using harsh chemical etchants, complicated chemical synthesis, or complex lithographic techniques. Upon release, the microsized 2D film is shown to reconfigure into a 3D structure caused by a mismatch in the properties of the individual layers. The actuation of the bilayer film can be triggered by partial swelling due to absorption of water or by partial expansion of one of the layers due to an increase in temperature.

17.
ACS Appl Mater Interfaces ; 6(5): 3099-104, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24556018

ABSTRACT

We describe a direct-write process for producing electrically conductive metal patterns at the surface of polymers. Thin films of poly(acrylic acid) (PAA) loaded with Ag ions are reduced by a scanning, atmospheric-pressure microplasma to form crystalline Ag features with a line width of 300 µm. Materials analysis reveals that the metallization occurs in a thin layer of ∼5 µm near the film surface, suggesting that the Ag ions diffuse to the surface. Sheet resistances of 1-10 Ω/sq are obtained independent of film thickness and Ag volume concentration, which is desirable for producing surface conductivity on polymers while minimizing metal loading.

18.
J Vis Exp ; (78): e50078, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23995288

ABSTRACT

Implantable microdevices are gaining significant attention for several biomedical applications. Such devices have been made from a range of materials, each offering its own advantages and shortcomings. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control. To this end, a custom microtensile tester was designed to accommodate microscale samples with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation. The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex.


Subject(s)
Materials Testing/methods , Nanocomposites/chemistry , Polyvinyls/chemistry , Prostheses and Implants , Animals , Cerebral Cortex/surgery , Elastic Modulus , Rats , Tensile Strength
19.
Nat Commun ; 4: 1819, 2013.
Article in English | MEDLINE | ID: mdl-23652007

ABSTRACT

Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to 'designer' spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states, including states in all three with room-temperature quantum coherence. The prevalence of this spin coherence shows that crystal polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence times allow us to use double electron-electron resonance to measure magnetic dipole interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together with the distinct optical and spin transition energies of such inequivalent states, these interactions provide a route to dipole-coupled networks of separately addressable spins.

20.
J Lab Autom ; 17(2): 125-33, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22357558

ABSTRACT

Surface charge characterization is important in the design and testing of coatings and membranes for biological and industrial applications, but commercial zeta potential meters are expensive and difficult to adapt to a variety of membrane designs. We combined inexpensive off-the-shelf components, a test mount fabricated with a conventional rapid prototyping system, and software written using a no-cost integrated development environment to implement a low-cost, automated streaming potential meter. Software written in Visual C# managed a USB data acquisition and control pod to regulate the transmembrane pressure while simultaneously reading transmembrane voltages from a digital multimeter with 0.1-nV precision. The streaming potential was measured through a commercially available polyethersulfone membrane with repeatable results for transmembrane pressures between -15 and 15 kPa. The transmembrane voltages for each set of six pressures were linear, with R (2) values greater than 0.9995. The zeta potentials calculated from the measured streaming potentials are in agreement with previous results for the same commercial membrane previously reported in the literature. The material cost for the system is less than $4000.

SELECTION OF CITATIONS
SEARCH DETAIL
...