Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704045

ABSTRACT

Antibiotic resistance (AR) is considered one of the greatest global threats in the current century, which can only be overcome if all interconnected areas of humans, animals and the environment are taken into account as part of the One Health concept proposed by the World Health Organization (WHO). Water and wastewater are among the most important environmental media of AR sources, where the phenomena are generally non-linear. Therefore, the aim of this study was to investigate the application of machine learning-based methods (MLMs) to solve AR-induced problems in water and wastewater. For this purpose, most relevant databases were searched in the period between 1987 and 2023 to systematically analyze and categorize the applications. Accordingly, the results showed that out of 12 applications, 11 (91.6%) were for shallow learning and 1 (8.3%) for deep learning. In shallow learning category, n = 6, 50% of the applications were regression and n = 4, 33.3% were classification, mainly using artificial neural networks, decision trees and Bayesian methods for the following objectives: Predicting the survival of antibiotic-resistant bacteria (ARB), determining the order of influencing parameters on AR-based scores, and identifying the major sources of antibiotic resistance genes (ARGs). In addition, only one study (8.3%) was found for clustering and no study for association. Surprisingly, deep learning had been used in only one study (8.3%) to predict ARGs sequences. Therefore, working on the knowledge gaps of AR, especially using clustering, association and deep learning methods, would be a promising option to analyze more aspects of the related problems. However, there is still a long way to go to consider and apply MLMs as unique approaches to study different aspects of AR in water and wastewater.


Subject(s)
Machine Learning , Wastewater , Wastewater/microbiology , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bayes Theorem , Neural Networks, Computer , Drug Resistance, Bacterial/genetics
2.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781688

ABSTRACT

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Subject(s)
Carps , Liver , Water Pollutants, Chemical , Animals , Carps/metabolism , Liver/metabolism , Liver/drug effects , Liver/ultrastructure , Water Pollutants, Chemical/toxicity , Microscopy, Electron, Transmission , Magnetic Iron Oxide Nanoparticles/toxicity
3.
J Environ Manage ; 358: 120742, 2024 May.
Article in English | MEDLINE | ID: mdl-38593733

ABSTRACT

The extensive use of pharmaceuticals has raised growing concerns regarding their presence in surface waters. High concentrations of sulfamethoxazole (SMX) and lincomycin (LIN), as commonly prescribed antibiotics, persist in various wastewaters and surface waters, posing risks to public health and the environment. Biochar derived from accessible biowaste, like activated sludge biomass, offers a sustainable and eco-friendly solution to mitigate antibiotic release into water systems. This study investigates the effectiveness of H3PO4-modified activated sludge-based biochar (PBC) synthesized through microwave (MW) heating for the adsorption of SMX and LIN antibiotics. The synthesis parameters of PBC were optimized using a central composite design considering MW power, time, and H3PO4 concentration. Characterization results validate the efficacy of the synthesis process creating a specific surface area of 365 m2/g, and well-developed porosity with abundant oxygen-containing functional groups. Batch and dynamic adsorption experiments were piloted to assess the adsorption performance of PBC in single and binary antibiotic systems. Results show that PBC exhibits a higher affinity for SMX rather than LIN, with maximum adsorption capacities of 45.6 mg/g and 26.6 mg/g, respectively. Based on kinetic studies chemisorption is suggested as the primary mechanism for SMX and LIN removal. Equilibrium studies show a strong agreement with the Redlich-Peterson isotherm, suggesting a composite adsorption mechanism with a greater probability of multilayer adsorption for both antibiotics. Hydrogen bonding and π-π electron sharing are suggested as the prevailing adsorption mechanisms of SMX and LIN on the modified biochar. Furthermore, a dynamic adsorption system was replicated using a fixed bed column setup, demonstrating effective removal of SMX and LIN from pure water and real wastewater samples using PBC-loaded hydrogel beads (PBC-B). These findings serve as crucial support for upcoming studies concerning the realistic application of sludge-based biochar in the removal of antibiotics from water systems.


Subject(s)
Biomass , Charcoal , Lincomycin , Sewage , Sulfamethoxazole , Lincomycin/chemistry , Sulfamethoxazole/chemistry , Charcoal/chemistry , Adsorption , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Wastewater/chemistry , Anti-Bacterial Agents/chemistry
4.
Chemosphere ; 357: 142088, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643842

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.


Subject(s)
Charcoal , Fluorocarbons , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Fluorocarbons/chemistry
5.
Sci Total Environ ; 925: 171559, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38458438

ABSTRACT

The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/chemistry , Biosolids , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
6.
Environ Pollut ; 326: 121463, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36958658

ABSTRACT

Studies investigating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in the respiratory system of healthy subjects are scarce. Moreover, separate studies on the health-related outcomes of air pollution for each sex are limited. The current panel study investigated sex-specific Nrf2 expression levels and related oxidative stress and inflammatory responses among healthy adolescents exposed to PM2.5, PM10, O3, and PM2.5-bounded metals in a high traffic region. Forty-nine healthy nonsmoking subjects participated in the study for five consecutive months (Nov. 2019 to Feb. 2020). Each subject was asked to provide 1 mL of exhaled breath condensate (EBC). Data were analyzed using linear mixed-effects models. The results showed that PM10, PM2.5, O3, and PM2.5-bounded metals were negatively linked to Nrf2 expression level in EBC of females with -58.3% (95% CI: 79.5, -15.4), -32.1% (95% CI: -50.3, -7.1), -76.2% (95% CI: -92.6, -23.9), and -1.9 (95% CI: -3.4, -0.4), respectively. While our results presented no significant association between the studied pollutants and Nrf2 gene expression in males, significant associations were observed between the pollutants and total nitric oxide (NOx), interleukins 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the EBC of females. In the case of males, only EBC cytokines showed a significant association with air pollutants. Overall, this study suggests that exposure to ambient air pollutants may affect the respiratory system with biologically different mechanisms in males and females. PM2.5 concentration had a positive correlation with exhaled TNF-α and IL6 values in females while positive correlation with TNF-α and negative correlation with IL6 values in males. O3 had a negative correlation with TNF-α in males.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Adolescent , Female , Humans , Male , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Biomarkers/metabolism , Gene Expression , Interleukin-6 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Particulate Matter/toxicity , Particulate Matter/analysis , Respiratory System/chemistry , Tumor Necrosis Factor-alpha/genetics
7.
J Hazard Mater ; 424(Pt C): 127603, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34772553

ABSTRACT

Selenium (Se) has become an increasingly serious water contamination concern worldwide. It is an essential micronutrient for humans and animals, however, can be extremely toxic if taken in excess. Sorption can be an effective treatment for Se removal from a wide range of water matrices. However, despite the synthesis and application of numerous adsorbents for remediation of aqueous Se, there has been no comprehensive review of the sorption capacities of various natural and synthesized sorbents. Herein, literature from 2010 to 2021 considering Se remediation using 112 adsorbents has been critically reviewed and presented in several comprehensive tables including: clay minerals and waste materials (presented in Table 1); zero-valent iron, iron oxides, and binary iron-based adsorbents (Table 2); other metals-based adsorbents (Table 3); carbon-based adsorbents (Table 4); and other adsorbents (Table 5). Each of these tables, and their relevant sections, summarizes preparation/modification methods, sorption capacities of various Se adsorbents, and proposed model/mechanisms of adsorption. Furthermore, future perspectives have been provided to assist in filling noted research gaps for the development of efficient Se adsorbents for real-world applications. This review will help in preliminary screening of various sorbent media to set up Se treatment technologies for a variety of end-users worldwide.


Subject(s)
Selenium , Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Humans , Water , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 789: 148068, 2021 May 29.
Article in English | MEDLINE | ID: mdl-34323830

ABSTRACT

Combined biological and physicochemical process was selected for treatment of laundry wastewater. The results show that after microbial adaptation, almost 91% of COD was removed at food to microorganism (F/M) ratio of 0.12 gBOD/gMLSS·d. Dehydrogenase activity of the biomass showed an increasing trend and finally reached 3.8 µgTFgbiomass.d corresponding to the highest process performance. 16SrRNA fragment and phylogenetic analysis identified Pseudomonas pharmacofabricae and Bacillus spp. as the dominant bacteria. The effluent of the biological process was then injected into the UV/O3 process for complete removal of residual COD and detergent. Finally, microfiltration and ultrafiltration were used to remove any remaining suspended solids. The operating cost analysis showed that 0.65 €/m3 treated wastewater is required for treatment of the laundry wastewater. Accordingly, the suggested combination of the biological and physicochemical process could be a promising and highly efficient process for treatment and reuse of laundry wastewater.

9.
RSC Adv ; 11(20): 12117-12135, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423776

ABSTRACT

The effects of different extraction methods on the structure-functionality and emulsification behaviour of pea and faba bean protein isolates, and concentrates were studied at pH 7 and 2, and a regression model was developed to predict emulsion characteristics based on protein properties. The concentrates produced by air classification had lower protein content but higher solubility in water compared to the isolates produced by isoelectric precipitation. The protein secondary structure did not show a consistent difference; however, much higher intrinsic fluorescence was observed for the soluble compared to the insoluble fractions. Interfacial tension of all faba proteins was lower than pea, while there was no significant difference between the concentrates and isolates. The higher protein content of the isolates was found to improve their water holding capacity. Canola oil (40 wt%)-in-water coarse emulsions, prepared with 2 wt% proteins and 0.25 wt% xanthan gum showed smaller particle size at pH 7 than pH 2, while the zeta potential, viscosity and gel strength were higher at pH 7. Emulsions stabilized with concentrates were better or comparable to the isolates in terms of particle size, zeta potential, and microstructure. The regression model predicted that an increase in solubility, intrinsic fluorescence, water and oil holding capacities are more favourable to decrease emulsion particle size, while an increase in solubility, intrinsic fluorescence would lead to higher emulsion destabilization. A decrease in interfacial tension was more favourable to lower destabilization. Emulsion viscosity was more dependent on water holding capacity compared to any other factor. Such models could be extremely beneficial for the food industry to modulate processing for the development of desired pulse protein ingredients.

10.
Environ Sci Pollut Res Int ; 28(10): 12659-12676, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33085008

ABSTRACT

The impact of arsenic (As) contamination of water is an ongoing concern worldwide with As released from anthropogenic activities including mining and agriculture. Biosorption is a promising As treatment methodology used currently for arsenate (As(V)) sorption from water. The biosorbent was developed by a simple and inexpensive treatment of coating of canola straw particles with iron hydroxides. The modification procedure was optimized with consideration of the concentration of iron solution, pH of modification process, and sonication time. A higher concentration of iron and lower pH led to an improved sorption capacity of the iron-loaded canola straw (ICS), while impacts of sonication time were not conclusive. Pareto analyses indicated that the magnitude of the effect of the pH was higher than that of the iron concentration. Overall, the maximum As(V) sorption capacity of the ICS was 5.5 mg/g for an 0.25 M FeCl3 solution concentration at pH 3. Analysis of kinetic data showed that the sorption processes of As(V) followed pseudo-second order and Elovich mechanisms, while sorption isotherm data were best represented by Freundlich and Temkin isotherm models. Studying the effect of ionic strength using NaCl suggested that the inner-sphere complex was the probable sorption mechanism. The thermodynamic parameters including ΔS°, ΔH°, and ΔG° showed that the As(V) sorption was thermodynamically favorable and spontaneous. Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that no reaction to As(III) occurred during the sorption of As(V) using the optimum ICS biosorbent. The evolutionary polynomial regression (EPR) approach was able to closely match predicted vs. experimental sorption capacities (R2 = 0.95). Overall, the improved understanding of the biosorbent's capability for removal of As(V) will be beneficial for assessment of its use for treatment of various water and wastewater matrices. In addition, knowledge gained from this research can assist in the understanding of sorption capacities of a variety of other biosorbents.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenates , Arsenic/analysis , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Water Pollutants, Chemical/analysis
11.
J Environ Manage ; 273: 111126, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32734895

ABSTRACT

Arsenic (As) is a worldwide human health issue with the major exposure route being the consumption of As-contaminated drinking water. Sorption is considered to be an efficient treatment method, among other technologies, for As removal from various water and wastewater matrices. There are common commercially available sorbents, however, the use of locally or regionally available biomasses have recently been of interest as potentially cost-effective and environmentally friendly alternatives. Despite these benefits, untreated biomasses often show low sorption capacity, can be too fragile, and can lead to coloration of waters when used in treatment processes. Treatment methods of biomasses can include chemical processes using acid or alkaline solutions, developing of biomass composite by deposition of activating agents, and preparation of biochars. This review includes an overview of 53 recent studies that assess a variety of biomass modification methods meant to overcome these issues such as activation with acids or bases and biomass-based composites. Furthermore, future perspectives have been provided to assist in the further optimization of methods for biomass modifications to enhance their As sorption capacities.


Subject(s)
Arsenic , Water Pollutants, Chemical/analysis , Water Purification , Adsorption , Biomass , Hydrogen-Ion Concentration , Water
12.
Sci Total Environ ; 739: 139750, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32540652

ABSTRACT

Arsenic (As) is an ever-present worldwide environmental contamination issue. The process of As sorption for treatment of contaminated waters is regarded as a promising treatment technology approach due to its simplicity and potential for high efficiency. Biochars are carbon-rich porous solids produced by heating of biomasses under low oxygen conditions. Biochars are considered to be environmentally friendly sorbents that can be used to treat various As-containing waters. However, unmodified biochar is generally a poor sorbent for As species due to static repulsion between the As oxyanions and the negatively charged biochar surface. The As sorption capacity of biochars can be substantially improved by treatments using various physical and chemical activation and modification methods. Thus, this review includes 63 research studies using physical and chemical approaches to enhance biochar physicochemical structures and As sorption efficiencies. The effectiveness of each method for altering the characteristics and sorption capacity of biochars is described. This review can help to focus the scope of future As biochar sorption studies and aid researchers in optimization of biochar-based sorbents for As treatment.


Subject(s)
Arsenic , Adsorption , Charcoal , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...