Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 167: 385-389, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34404009

ABSTRACT

Lippia alba (Mill.) N.E. Brown (Verbenaceae), popularly known as "lemon balm" or "bushy matgrass", is widely used in folk medicine due to its anti-inflammatory, antispasmodic, analgesic, and digestive properties. It was described as an autopolyploid complex with five cytotypes (2n = 30, 38, 45, 60 and 90). To enhance our understanding of the biological variation of the species, we investigated, comparatively, the proteomic profile of all ploidal levels (diploid, aneuploid, triploid, tetraploid, and hexaploid). Leaf proteins were extracted with subsequent separation by two-dimensional electrophoresis, spot analysis, and protein identification by mass spectrometry. By comparing the proteomic profile of diploid accession to the profile of the other ploidal levels we identified differential expression between the analysed spots. We identified 34 proteins with differential expression between the ploidal levels in comparison with the diploid. The identified proteins seem to play relevant roles in the primary metabolism of L. alba suggesting that a specific set of proteins was selected during the polyploidization process, being the triploid the most different one. Given that protein composition can substantially affect the desired therapeutic effect, we posit that further combination of proteomic and metabolomic studies may help to unravel genetic variations and phenotypic profiles in L. alba.


Subject(s)
Lippia , Diploidy , Polyploidy , Proteins , Proteomics
2.
Mol Biol Rep ; 47(6): 4911-4915, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32328862

ABSTRACT

Microsatellite primers were developed in Lippia alba complex to better understanding the origins and evolution of the species. We sought to increase the numbers of available simple sequence repeat (SSR) markers. We performed low-coverage (~ twofold) genomic DNA sequencing of a diploid accession and generated a de novo assembly comprising 175,572 contigs. Sixteen SSR loci were selected and of these 13 SSR loci were successfully amplified in 20 L. alba tetraploid accessions and in 12 other Lippia species. Only one SSR locus was monomorphic, whereas 12 loci were polymorphic, yielding one to nine alleles. The heterozygosity was similar among markers, with values of 0.274-0.485; the polymorphism information content values varied from 0.237 to 0.367. These markers were successfully amplified in related species with 85% of transferability on average. Thus, we demonstrate the utility of including a de novo assembly step to obtain SSR markers from low-coverage genomic datasets.


Subject(s)
Lippia/genetics , Microsatellite Repeats/genetics , Alleles , Chromosome Mapping/methods , DNA Primers/genetics , DNA, Plant/genetics , Gene Frequency/genetics , Genotype , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Genetic/genetics , Sequence Analysis, DNA/methods
3.
Am J Bot ; 107(3): 466-476, 2020 03.
Article in English | MEDLINE | ID: mdl-32115694

ABSTRACT

PREMISE: Plant genomes vary in size and complexity due in part to polyploidization. Latitudinal analyses of polyploidy are biased toward floras of temperate regions, with much less research done in the tropics. Lippia alba has been described as a tropical polyploid complex with diploid, triploid, tetraploid, and hexaploid accessions. However, no data regarding relationships among the ploidal levels and their origins have been reported. Our goals are to clarify the relationships among accessions of Lippia alba and the origins of each ploidal level. METHODS: We investigated 98 samples representing all five geographical regions of Brazil and all ploidal levels using microsatellite (SSR) allelic variation and DNA sequences of ITS and trnL-F. Nine morphological structures were analyzed from 33 herbarium samples, and the chemical compounds of 78 accessions were analyzed by GC-MS. RESULTS: Genetic distance analysis, the alignment block pattern, as well as RAxML and Bayesian trees showed that accessions grouped by ploidal level. The triploids form a well-defined group that originated from a single group of diploids. The tetraploids and hexaploid grouped together in SSR and trnL-F analyses. The recovered groups agree with chemical data and morphology. CONCLUSIONS: The accessions grouped by ploidal level. Only one origin of triploids from a single group of diploids was observed. The tetraploid origin is uncertain; however, it appears to have contributed to the origin of the hexaploid. This framework reveals linkages among the ploidal levels, providing new insights into the evolution of a polyploid complex of tropical plants.


Subject(s)
Lippia , Bayes Theorem , Brazil , Humans , Phylogeny , Polyploidy
4.
An Acad Bras Cienc ; 88(3 Suppl): 1727-1734, 2016.
Article in English | MEDLINE | ID: mdl-27556330

ABSTRACT

Agapanthus (Agapanthaceae) has 10 species described. However, most taxonomists differ respect to this number because the great phenotypic plasticity of the species. The cytogenetic has been an important tool to aid the plant taxon identification, and to date, all taxa of Agapanthus L'Héritier studied cytologically, presented 2n = 30. Although the species possess large chromosomes, the group is karyologically little explored. This work aimed to increase the cytogenetic knowledge of Agapanthus africanus (L.) Hoffmanns by utilization of chromosome banding techniques with DAPI / CMA3 and Fluorescent in situ Hybridization (FISH). In addition, flow cytometry was used for determination of DNA content and the percentage of AT / GC nitrogenous bases. Plants studied showed 2n = 30 chromosomes, ranging from 4.34 - 8.55 µm, with the karyotype formulae (KF) = 10m + 5sm. Through FISH, one 45S rDNA signal was observed proximally to centromere of the chromosome 7, while for 5S rDNA sites we observed one signal proximally to centromere of chromosome 9. The 2C DNA content estimated for the species was 2C = 24.4 with 59% of AT and 41% of GC. Our data allowed important upgrade for biology and cytotaxonomy of Agapanthus africanus (L.) Hoffmanns.


Subject(s)
Amaryllidaceae/genetics , Chromosome Banding/methods , DNA, Plant/chemistry , DNA, Ribosomal/chemistry , Heterochromatin/chemistry , Amaryllidaceae/classification , Base Composition , In Situ Hybridization, Fluorescence , Karyotyping
5.
Nature ; 520(7549): 679-82, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25707794

ABSTRACT

Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/virology , Begomovirus/immunology , Immunity, Innate , Plant Immunity , Protein Biosynthesis/immunology , Protein Serine-Threonine Kinases/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Immune Tolerance , Protein Binding , Protein Biosynthesis/genetics , Ribosomal Protein L10 , Ribosomal Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...