Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(6): 064504, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778053

ABSTRACT

The Cusp Plasma Imaging Detector (CuPID) CubeSat observatory is a 6U CubeSat designed to observe solar wind charge exchange in magnetospheric cusps to test competing theories of magnetic reconnection at the Earth's magnetopause. The CuPID is equipped with three instruments, namely, a wide field-of-view (4.6° × 4.6°) soft x-ray telescope, a micro-dosimeter suite, and an engineering magnetometer optimized for the science operation. The instrument suite has been tested and calibrated in relevant environments, demonstrating successful design. The testing and calibration of these instruments produced metrics and coefficients that will be used to create the CuPID mission's data product.

2.
Anat Rec (Hoboken) ; 297(5): 892-900, 2014 May.
Article in English | MEDLINE | ID: mdl-24523260

ABSTRACT

In order to model the hearing capabilities of marine mammals (cetaceans), it is necessary to understand the mechanical properties, such as elastic modulus, of the middle ear bones in these species. Biologically realistic models can be used to investigate the biomechanics of hearing in cetaceans, much of which is currently unknown. In the present study, the elastic moduli of the auditory ossicles (malleus, incus, and stapes) of eight species of cetacean, two baleen whales (mysticete) and six toothed whales (odontocete), were measured using nanoindentation. The two groups of mysticete ossicles overall had lower average elastic moduli (35.2 ± 13.3 GPa and 31.6 ± 6.5 GPa) than the groups of odontocete ossicles (53.3 ± 7.2 GPa to 62.3 ± 4.7 GPa). Interior bone generally had a higher modulus than cortical bone by up to 36%. The effects of freezing and formalin-fixation on elastic modulus were also investigated, although samples were few and no clear trend could be discerned. The high elastic modulus of the ossicles and the differences in the elastic moduli between mysticetes and odontocetes are likely specializations in the bone for underwater hearing.


Subject(s)
Adaptation, Physiological/physiology , Cetacea/physiology , Ear Ossicles/physiology , Elastic Modulus , Hearing/physiology , Animals , Models, Biological
3.
J Acoust Soc Am ; 132(5): 3263-72, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23145610

ABSTRACT

The lack of baleen whale (Cetacea Mysticeti) audiograms impedes the assessment of the impacts of anthropogenic noise on these animals. Estimates of audiograms, which are difficult to obtain behaviorally or electrophysiologically for baleen whales, can be made by simulating the audiogram as a series of components representing the outer, middle, and inner ear (Rosowski, 1991; Ruggero and Temchin, 2002). The middle-ear portion of the system can be represented by the middle-ear transfer function (METF), a measure of the transmission of acoustic energy from the external ear to the cochlea. An anatomically accurate finite element model of the minke whale (Balaenoptera acutorostrata) middle ear was developed to predict the METF for a mysticete species. The elastic moduli of the auditory ossicles were measured by using nanoindentation. Other mechanical properties were estimated from experimental stiffness measurements or from published values. The METF predicted a best frequency range between approximately 30 Hz and 7.5 kHz or between 100 Hz and 25 kHz depending on stimulation location. Parametric analysis found that the most sensitive parameters are the elastic moduli of the glove finger and joints and the Rayleigh damping stiffness coefficient ß. The predicted hearing range matches well with the vocalization range.


Subject(s)
Ear, Middle/physiology , Hearing , Minke Whale/physiology , Models, Anatomic , Models, Biological , Animals , Auditory Threshold , Computer Simulation , Ear, Middle/anatomy & histology , Elastic Modulus , Energy Transfer , Finite Element Analysis , Minke Whale/anatomy & histology , Nanotechnology
6.
J Acoust Soc Am ; 119(1): 394-405, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16454294

ABSTRACT

The construction, measurement, and modeling of an artificial cochlea (ACochlea) are presented in this paper. An artificial basilar membrane (ABM) was made by depositing discrete Cu beams on a piezomembrane substrate. Rather than two fluid channels, as in the mammalian cochlea, a single fluid channel was implemented on one side of the ABM, facilitating the use of a laser to detect the ABM vibration on the other side. Measurements were performed on both the ABM and the ACochlea. The measurement results on the ABM show that the longitudinal coupling on the ABM is very strong. Reduced longitudinal coupling was achieved by cutting the membrane between adjacent beams using a laser. The measured results from the ACochlea with a laser-cut ABM demonstrate cochlear-like features, including traveling waves, sharp high-frequency rolloffs, and place-specific frequency selectivity. Companion computational models of the mechanical devices were formulated and implemented using a circuit simulator. Experimental data were compared with simulation results. The simulation results from the computational models of the ABM and the ACochlea are similar to their experimental counterparts.


Subject(s)
Cochlea/physiology , Models, Anatomic , Acoustic Stimulation , Basilar Membrane/physiology , Biomechanical Phenomena , Elasticity , Humans , Lasers , Membranes, Artificial , Models, Biological , Polymethyl Methacrylate , Polyvinyls , Signal Processing, Computer-Assisted , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...