Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894444

ABSTRACT

This work describes a sapphire cryo-applicator with the ability to sense tissue freezing depth during cryosurgery by illumination of tissue and analyzing diffuse optical signals in a steady-state regime. The applicator was manufactured by the crystal growth technique and has several spatially resolved internal channels for accommodating optical fibers. The method of reconstructing freezing depth proposed in this work requires one illumination and two detection channels. The analysis of the detected intensities yields the estimation of the time evolution of the effective attenuation coefficient, which is compared with the theoretically calculated values obtained for a number of combinations of tissue parameters. The experimental test of the proposed applicator and approach for freezing depth reconstruction was performed using gelatin-based tissue phantom and rat liver tissue in vivo. It revealed the ability to estimate depth up to 8 mm. The in vivo study confirmed the feasibility of the applicator to sense the freezing depth of living tissues despite the possible diversity of their optical parameters. The results justify the potential of the described design of a sapphire instrument for cryosurgery.


Subject(s)
Aluminum Oxide , Cryosurgery , Freezing , Liver , Phantoms, Imaging , Animals , Cryosurgery/methods , Rats , Liver/surgery , Liver/diagnostic imaging , Aluminum Oxide/chemistry
2.
J Biophotonics ; 16(3): e202200288, 2023 03.
Article in English | MEDLINE | ID: mdl-36510652

ABSTRACT

This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al2 O3 melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth. The current type of the 12.5-mm diameter sapphire probe cooled down by the liquid nitrogen assumes a superficial cryoablation. The experimental test made by using a gelatin-intralipid tissue phantom shows the feasibility of such concept, revealing the capabilities of monitoring the freezing depth up to 10 mm by the particular instrumentation realization of the probe. This justifies a potential of sapphire-based instruments aided by optical diagnosis in modern cryosurgery.


Subject(s)
Aluminum Oxide , Cryosurgery , Freezing , Feasibility Studies , Cryosurgery/methods
3.
Lasers Surg Med ; 54(4): 611-622, 2022 04.
Article in English | MEDLINE | ID: mdl-34918347

ABSTRACT

OBJECTIVES: The development of compact diagnostic probes and instruments with an ability to direct access to organs and tissues and integration of these instruments into surgical workflows is an important task of modern physics and medicine. The need for such tools is essential for surgical oncology, where intraoperative visualization and demarcation of tumor margins define further prognosis and survival of patients. In this paper, the possible solution for this intraoperative imaging problem is proposed and its feasibility to detect tumorous tissue is studied experimentally. METHODS: For this aim, the sapphire scalpel was developed and fabricated using the edge-defined film-fed growth technique aided by mechanical grinding, polishing, and chemical sharpening of the cutting edge. It possesses optical transparency, mechanical strength, chemical inertness, and thermal resistance alongside the presence of the as-grown hollow capillary channels in its volume for accommodating optical fibers. The rounding of the cutting edge exceeds the same for metal scalpels and can be as small as 110 nm. Thanks to these features, sapphire scalpel combines tissue dissection with light delivering and optical diagnosis. The feasibility for the tumor margin detection was studied, including both gelatin-based tissue phantoms and ex vivo freshly excised specimens of the basal cell carcinoma from humans and the glioma model 101.8 from rats. These tumors are commonly diagnosed either non-invasively or intraoperatively using different modalities of fluorescence spectroscopy and imaging, which makes them ideal candidates for our feasibility test. For this purpose, fiber-based spectroscopic measurements of the backscattered laser radiation and the fluorescence signals were carried out in the visible range. RESULTS: Experimental studies show the feasibility of the proposed sapphire scalpel to provide a 2-mm-resolution of the tumor margins' detection, along with an ability to distinguish the tumor invasion region, which results from analysis of the backscattered optical fields and the endogenous or exogenous fluorescence data. CONCLUSIONS: Our findings justified a strong potential of the sapphire scalpel for surgical oncology. However, further research and engineering efforts are required to optimize the sapphire scalpel geometry and the optical diagnosis protocols to meet the requirements of oncosurgery, including diagnosis and resection of neoplasms with different localizations and nosologies.


Subject(s)
Aluminum Oxide , Neoplasms , Animals , Humans , Lasers , Margins of Excision , Optical Fibers , Phantoms, Imaging , Rats
4.
J Biomed Opt ; 26(4)2021 01.
Article in English | MEDLINE | ID: mdl-33506657

ABSTRACT

SIGNIFICANCE: Uncontrolled cryoablation of tissues is a strong reason limiting the wide application of cryosurgery and cryotherapy due to the certain risks of unpredicted damaging of healthy tissues. The existing guiding techniques are unable to be applied in situ or provide insufficient spatial resolution. Terahertz (THz) pulsed spectroscopy (TPS) based on sensitivity of THz time-domain signal to changes of tissue properties caused by freezing could form the basis of an instrument for observation of the ice ball formation. AIM: The ability of TPS for in situ monitoring of tissue freezing depth is studied experimentally. APPROACH: A THz pulsed spectrometer operated in reflection mode and equipped with a cooled sample holder and ex vivo samples of bovine visceral adipose tissue is applied. Signal spectrograms are used to analyze the changes of THz time-domain signals caused by the interface between frozen and unfrozen tissue parts. RESULTS: Experimental observation of TPS signals reflected from freezing tissue demonstrates the feasibility of TPS to detect ice ball formation up to 657-µm depth. CONCLUSIONS: TPS could become the promising instrument for in situ control of cryoablation, enabling observation of the freezing front propagation, which could find applications in various fields of oncology, regenerative medicine, and THz biophotonics.


Subject(s)
Cryosurgery , Animals , Cattle , Cryotherapy , Feasibility Studies , Freezing , Ice
5.
J Biophotonics ; 13(10): e202000164, 2020 10.
Article in English | MEDLINE | ID: mdl-32681714

ABSTRACT

A sapphire shaped capillary needle designed for collimating and focusing of laser radiation was proposed and fabricated by the edge-defined film-fed growth technique. It features an as-grown surface quality, high transparency for visible and near-infrared radiation, high thermal and chemical resistance and the complex shape of the tip, which protects silica fibers. The needle's geometrical parameters can be adjusted for use in various situations, such as type of tissue, modality of therapy and treatment protocol. The focusing effect was demonstrated numerically and observed experimentally during coagulation of the ex vivo porcine liver samples. This needle in combination with 0.22NA optical fiber allows intensive and uniform coagulation of 150 mm3 volume interstitially and 30 mm3 superficially by laser exposure with 280 J without tissue carbonization and fiber damaging along with delicate treatment of small areas. The demonstrated results reveal the perspectives of the proposed sapphire microfocusing needle for laser surgery and therapy.


Subject(s)
Laser Therapy , Animals , Lasers , Needles , Optical Fibers , Swine
6.
J Biomed Opt ; 24(12): 1-7, 2019 12.
Article in English | MEDLINE | ID: mdl-31849206

ABSTRACT

Sapphire capillary needles fabricated by edge-defined film-fed growth (EFG) technique hold strong potential in laser thermotherapy and photodynamic therapy, thanks to the advanced physical properties of sapphire. These needles feature an as-grown optical quality, their length is tens of centimeters, and they contain internal capillary channels, with open or closed ends. They can serve as optically transparent bearing elements with optical fibers introduced into their capillary channels in order to deliver laser radiation to biological tissues for therapeutic and, in some cases, diagnostic purposes. A potential advantage of the EFG-grown sapphire needles is associated with an ability to form the tip of a needle with complex geometry, either as-grown or mechanically treated, aimed at controlling the output radiation pattern. In order to examine a potential of the radiation pattern shaping, we present a set of fabricated sapphire needles with different tips. We studied the radiation patterns formed at the output of these needles using a He-Ne laser as a light source, and used intralipid-based tissue phantoms to proof the concept experimentally and the Monte-Carlo modeling to proof it numerically. The observed results demonstrate a good agreement between the numerical and experimental data and reveal an ability to control within wide limits the direction of tissue exposure to light and the amount of exposed tissue by managing the sapphire needle tip geometry.


Subject(s)
Aluminum Oxide , Laser Therapy/instrumentation , Needles , Equipment Design , Phantoms, Imaging , Photochemotherapy/instrumentation
7.
Sci Rep ; 7(1): 13727, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062107

ABSTRACT

Tunable interparticle interactions in colloidal suspensions are of great interest because of their fundamental and practical significance. In this paper we present a new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields. The maximal magnitude of the field in a suspension is 25 V/mm, the field homogeneity is better than 1% over the horizontal distance of 250 µm, and the rotation frequency is in the range of 40 Hz to 30 kHz. Based on numerical electrostatic calculations for the developed setup with eight planar electrodes, we found optimal experimental conditions and performed demonstration experiments with a suspension of 2.12 µm silica particles in water. Thanks to its technological flexibility, the setup is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids, and therefore it should be of interest for a broad community of soft matter, photonics, and material science.

SELECTION OF CITATIONS
SEARCH DETAIL
...