Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 19(8): 2980-2991, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35850530

ABSTRACT

Acid-base multicomponent systems have become a popular choice as a strategy to fine-tune the physicochemical properties of active pharmaceutical ingredients. Current prediction tools based on the principles of anticrystal engineering cannot always accurately predict the nature of intermolecular interactions within a multicomponent system. Even small changes in the physicochemical parameters of parent components can result in unexpected outcomes, and many salt, cocrystal, and ionic liquid forms are still being discovered empirically. In this work, we aimed to establish structural consistency in a series of mixtures comprising lidocaine (LID) with decanedioic, undecanedioic, dodecanedioic, and tridecanedioic acids and to explore how length and flexibility of the acid carbon backbone affect the molecular recognition, crystallization, and thermal behavior of the expected binary systems. We found that neat grinding of LID with dicarboxylic acids results in the formation of eutectic phases. The observed eutectic melting points deviated from the ideal eutectic temperatures predicted by the Schroeder van Laar model because of hydrogen bonding between the reacting components within the mixtures. Furthermore, thermal and infrared analysis provided evidence for the possible formation of new phases stemming from partial ionization of the counterions. Besides, the structure of a previously undetermined form I of the tridecanedioic acid was solved by single crystal X-ray diffraction.


Subject(s)
Ionic Liquids , Lidocaine , Crystallization , Dicarboxylic Acids , Hydrogen Bonding , Ionic Liquids/chemistry , Lidocaine/chemistry
2.
Int J Pharm ; 607: 120969, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34358543

ABSTRACT

Liquid forms of active pharmaceutical ingredients, ionic liquids (ILs) and deep eutectic mixtures (DEMs), offer several potential benefits in respect to advancing pharmaceutical formulations. The aim of this study was to develop and characterise ILs/DEMs composed of two active molecules: ketoprofen (KET), as the acidic component, and a local anaesthetics (LA), lidocaine (LID), mepivacaine (MEP) or bupivacaine (BUP), which constituted the basic component. A mechanosynthetic approach was successfully applied to obtain LA-KET low melting systems. Composition/temperature phase diagrams were determined by differential scanning calorimetry. The amide LA-KET mixtures showed a eutectic behaviour during heating and formed viscous liquids upon quench cooling. Considering the quench cooled LA-KET mixtures, LA crystallisation was observed only in the LA-rich mixtures. LID, MEP and BUP formed disordered complexes with KET at an approximate 1:2 stoichiometry. Infrared spectroscopy studies revealed that the mixtures were composed mainly of hydrogen bonded acid and base molecules, but small amounts of carboxylate anions were detected. The formation of LA-KET complex not only suppressed the high crystallisation tendency of the LA molecules in the dry state, but also eliminated the crystallisation of KET and LA molecules induced by moisture, as revealed by dynamic vapour sorption studies.


Subject(s)
Ionic Liquids , Ketoprofen , Amides , Anesthetics, Local , Calorimetry, Differential Scanning
3.
Pharmaceutics ; 12(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316479

ABSTRACT

Ionic liquids (ILs) and deep eutectic mixtures (DEMs) are potential solutions to the problems of low solubility, polymorphism, and low bioavailability of drugs. The aim of this work was to develop and investigate ketoprofen (KET)-based ILs/DEMs containing an ester local anesthetic (LA): benzocaine (BEN), procaine (PRO) and tetracaine (TET) as the second component. ILs/DEMs were prepared via a mechanosynthetic process that involved the mixing of KET with an LA in a range of molar ratios and applying a thermal treatment. After heating above the melting point and quench cooling, the formation of supercooled liquids with Tgs that were dependent on the composition was observed for all KET-LA mixtures with exception of that containing 95 mol% of BEN. The KET-LA mixtures containing either ≥ 60 mol% BEN or 95 mol% of TET showed crystallization to BEN and TET, respectively, during either cooling or second heating. KET decreased the crystallization tendency of BEN and TET and increased their glass-forming ability. The KET-PRO systems showed good glass-forming ability and did not crystallize either during the cooling or during the second heating cycle irrespective of the composition. Infrared spectroscopy and molecular modeling indicated that KET and LAs formed DEMs, but in the KET-PRO systems small quantities of carboxylate anions were present.

4.
J Org Chem ; 80(21): 10651-9, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26447942

ABSTRACT

Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.


Subject(s)
Acetonitriles/chemistry , Anisoles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Lignans/chemistry , Lignans/pharmacology , Superoxides/chemistry , Hydrogen Bonding , Kinetics , Molecular Structure , Oxidation-Reduction , Quantum Theory , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...