Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol Biotechnol ; 10(1): 11, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248509

ABSTRACT

Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λpeak = 635 nm), green light (λpeak = 519 nm) or blue light (λpeak = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm-2, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm-2, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm-2. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.

2.
Pathogens ; 12(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678445

ABSTRACT

The mass occurrence of the sugar beet weevil (Asproparthenis punctiventris, previously Bothynoderes punctiventris) has been endangering sugar beet cultivation in Austria for centuries. Exacerbated by climatic and political changes (warmer, drier spring and limited access to chemical pesticides), new approaches are needed to counter the problem. The aim of our work was to test whether the bioinsecticide Metarhizium brunneum Ma 43 (formerly M. anisopliae var. anisopliae BIPESCO 5/F52) can be used as a sustainable plant protection product against the sugar beet weevil. Our goal was to control the pest in all its development stages through multiple applications. Therefore, GranMetTM-P, a granular formulation of M. brunneum Ma 43, was applied in spring to establish the fungus in the soil, whereas GranMetTM-WP, a liquid formulation of the production strain, was used in early summer on trap ditches and leaves to target the adult weevils. Soil and plant samples as well as weevils were collected during the planting season from the trial sites to evaluate the development of the fungus and the mycosis of the treated weevils. In addition, data on hibernating weevils and their emigration from untreated field sites was collected. In all field sites, the Metarhizium spp. abundance increased above the background level (<1000 CFU g−1 soil dry weight) after application of the product. With an increasing number of treatments per plot, and thus an increased contact possibility between pest and the fungus, a rise in the mycosis rate was observed. In conclusion, the various Metarhizium application strategies, which are already available or in testing, must be implemented to ensure control in both old and new sugar beet fields. Metarhizium is a further asset in the successful control of this sugar beet pest.

SELECTION OF CITATIONS
SEARCH DETAIL
...