Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(6): 2017-2028, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36708071

ABSTRACT

BACKGROUND: The application of chemical pesticides in control of plant bacterial disease may cause potential environmental pollution. Herein, based on the resistance-inducing ability and the special rod-like structure with high aspect ratio of bio-derived chitin nanocrystals (ChNC), a new Cu composite rod-like nanoparticle was fabricated (ChNC@Cu). The antibacterial activity of the composite nanoparticle was systematically studied, and its safety was evaluated. RESULTS: TEM, FTIR, ICP and other characterization methods proved that ChNC@Cu is a nano rod-like structure, with a Cu2+ loading capacity of 2.63%. In vitro experiments showed that the inhibition rate of ChNC@Cu to P. syringae pv. tabaci was more than 95% when the copper content was 41.6 µg mL-1 . In vivo experiments showed that ChNC@Cu had a good protective effect on P. syringae pv. tabaci of tobacco. In addition, ChNC@Cu exhibited stronger antibacterial activity than Thiodiazole copper (TC) at the same copper content. The study on the antibacterial mechanism of ChNC@Cu proved that ChNC@Cu caused bacterial death by destroying the bacterial cell membrane structure and damaging the DNA bacteria. And ChNC@Cu is highly safe for plants and can promote seed germination and plant growth. CONCLUSION: The special rod-like structure of ChNC can enrich Cu2+ to form ChNC@Cu. ChNC@Cu has a good protective effect on bacterial infection of tobacco, and achieves a great antibacterial activity at low Cu2+ concentration, which indicated that ChNC@Cu has induced resistance and antibacterial effect. As a novel green nanofungicide, ChNC@Cu has high potential application value in control of agricultural bacterial diseases. © 2023 Society of Chemical Industry.


Subject(s)
Copper , Nanoparticles , Copper/pharmacology , Chitin , Nicotiana , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Appl Environ Microbiol ; 88(23): e0161122, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36354348

ABSTRACT

Pepper blight, caused by the oomycete pathogen Phytophthora capsici (P. capsici), is one of the most destructive soilborne diseases worldwide. Between 2019 and 2020, 235 single spore isolates of P. capsici were collected from 36 commercial pepper planting areas in Sichuan, Chongqing, and Guizhou provinces in China. A novel full set of 323 high-quality polymorphic microsatellites was obtained by resequencing 10 isolates. In total, 163 isolates with two alleles per microsatellite locus were used for population analysis and resulted in 156 genotypes on 10 microsatellite loci. The genetic diversity, population differentiation, principal component, genetic structure, and genetic relationships analyses showed an extensive variety of the P. capsici in Sichuan and Guizhou with clonal lineages, two shared genotypes, and no geographic differentiation. The population from Chongqing was differentiated from that of Sichuan and Guizhou and had the highest genetic diversity. There was no significant distinction between the populations of the two sampling years, but there was a small differentiation between the populations from bell peppers and hot peppers. The isolates from Southwest China were largely distant from the two reference isolates from the USA. The analysis of molecular variance showed that the major variance of the populations was within populations. The linkage equilibrium test, mating type composition, and oospore detection indicated that only P. capsici from the Jiulongpo district of Chongqing had appeared in sexual recombination. Overall, this study revealed that the high and complex genetic diversity population of P. capsici in Sichuan, Chongqing, and Guizhou with uneven geographic variation and limited sexual reproductive behavior in Chongqing, potentially driven by differences in the geographical environment, reproductive patterns, different cultivars, and artificial long-distance transfers. IMPORTANCE Phytophthora capsici, a notorious soilborne and rapidly evolving pathogen with a wide range of hosts, is a huge threat to pepper production worldwide. However, the detailed genetic structure and dynamics of P. capsici in most Chinese provinces are still unclear, even though China is the world's largest producer and consumer of peppers. Here, a novel full set of high-quality polymorphic microsatellites, obtained by genome resequencing data of 10 isolates from Southwest China, was provided for future population analyses. In this study, we further investigated and established the genetic structure, sexual recombination, geographic subdivisions, interannual stability, differentiation in different types of host peppers, and member relationships of P. capsici from three provinces in Southwest China. These results reveal the genetic structure and dynamics of P. capsici in three provinces of Southwest China and help us to execute more effective management strategies in the future.


Subject(s)
Capsicum , Phytophthora , Piper nigrum , Phytophthora/genetics , Plant Diseases , Microsatellite Repeats , Genetics, Population , Genetic Variation
3.
Int J Biol Macromol ; 223(Pt A): 1208-1222, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36375663

ABSTRACT

Although ε-poly-l-lysine (ε-PL) has a good potential as a green fungicide, high concentration is usually required during its controlling of plant disease. On the other hand, same problems also appeared in the study of CuONP based nano pesticides. In this manuscript, a new composite alginate nanogel (ALGNP) that containing CuONP and ε-PL was fabricated via in situ reduction of CuONP in nanogel and ε-PL surface coating. Based on the chelation of amide bond of ε-PL and Cu2+ released by CuONP, the synergy effect between Cu2+ and ε-PL layer of the nanogel make the nanogel (CuONP@ALGNP@PL) performed high anti-fungal activity under low Cu2+ and ε-PL concentration (Cu concentration was 40.09 µg/mL, ε-PL concentration was 11.90 µg/mL). Study showed that the nanogel could more significantly destroy the fungal cell membrane than CuONP@ALGNP and ALGNP@PL, also better than commercial fungicide CuCaSO4 (Cu concentration was 120 µg/mL). Furthermore, CuONP@ALGNP@PL could seriously affect the spore production, spore germination rate and bud tube elongation length of Alternaria alternate. Moreover, CuONP@ALGNP@PL also inhibit Botrytis cinerea, Phytophthora, Thanatephorus cucumeris and Fusarium graminearum. These results showed that composite of CuONP and ε-PL based on nanogel can decrease the raw materials application amount, and achieve a high disease controlling ability, which provides a new perspective for preventing fungal diseases.


Subject(s)
Fungicides, Industrial , Phytophthora , Polylysine/pharmacology , Polylysine/chemistry , Alternaria , Plant Diseases/prevention & control , Plant Diseases/microbiology , Fungicides, Industrial/pharmacology
4.
Pestic Biochem Physiol ; 184: 105100, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715039

ABSTRACT

Zinc ions (Zn2+) are used to promote plant growth and treat multiple diseases. However, it is still unclear which pathways in plants respond to Zn2+. In this study, we found that supplying (CH3COO)2Zn can effectively delay tobacco mosaic virus (TMV) replication and movement in Nicotiana benthamiana. To further understand the regulatory mechanism of antiviral activity mediated by Zn2+, we examined the transcriptomic changes of leaves treated with Zn2+. Three days after treatment, 7575 differential expression genes (DEGs) were enriched in the Zn2+ treatment group compared with the control group. Through GO and KEGG analysis, the pathway of phosphatidylinositol signaling system and inositol phosphate metabolism were significantly enriched after treated with Zn2+, and a large number of ethylene-responsive transcription factors (ERFs) involved in inositol phosphate metabolism were found to be enriched. We identified ERF5 performed a positive effect on plant immunity. Our findings demonstrated that Zn2+-mediated resistance in N. benthamiana activated signal transduction and regulated the expression of resistance-related genes. The results of the study uncover a global view of mRNA changes in Zn2+-mediated cellular processes involved in the competition between plants and viruses.


Subject(s)
Tobacco Mosaic Virus , Gene Expression Profiling , Inositol Phosphates/metabolism , Ions/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana , Zinc/metabolism , Zinc/pharmacology
5.
Hortic Res ; 7(1): 93, 2020.
Article in English | MEDLINE | ID: mdl-32528705

ABSTRACT

Plant NDR1/HIN1-like (NHL) genes play an important role in triggering plant defenses in response to biotic stresses. In this study, we performed a genome-wide identification of the NHL genes in pepper (Capsicum annuum L.) and characterized the functional roles of these CaNHL genes in response to abiotic stresses and infection by different pathogens. Phylogenetic analysis revealed that CaNHLs can be classified into five distinct subgroups, with each group containing generic and specific motifs. Regulatory element analysis showed that the majority of the promoter regions of the identified CaNHLs contain jasmonic acid (JA)-responsive and salicylic acid (SA)-responsive elements, and transcriptomic analysis revealed that CaNHL genes are expressed in all the examined tissues of pepper. The CaNHL1, CaNHL4, CaNHL6, CaNHL10, CaNHL11, and CaNHL12 genes were significantly upregulated under abiotic stress as well as in response to different pathogens, such as TMV, Phytophthora capsici and Pseudomonas syringae. In addition, we found that CaNHL4 localizes to the plasma membrane. CaNHL4-silenced pepper plants display significantly increased susceptibility to TMV, Phytophthora capsici and Pseudomonas syringae, exhibiting reduced expression of JA-related and SA-related genes and reduced ROS production. However, transient overexpression of CaNHL4 in pepper increases the expression of JA-related and SA-related genes, enhances the accumulation of ROS, and inhibits the infection of these three pathogens. Collectively, for the first time, we identified the NHL genes in pepper and demonstrated that CaNHL4 is involved in the production of ROS and that it also regulates the expression of JA-related and SA-related genes in response to different pathogens, suggesting that members of the CaNHL family play an essential role in the disease resistance of pepper.

SELECTION OF CITATIONS
SEARCH DETAIL
...