Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(9): 2427-2435, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28800217

ABSTRACT

The voltage-gated sodium channel NaV1.7 is a genetically validated pain target under investigation for the development of analgesics. A therapeutic with a less frequent dosing regimen would be of value for treating chronic pain; however functional NaV1.7 targeting antibodies are not known. In this report, we describe NaV1.7 inhibitory peptide-antibody conjugates as an alternate construct for potential prolonged channel blockade through chemical derivatization of engineered antibodies. We previously identified NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity. Tethering GpTx-1 peptides to antibodies bifunctionally couples FcRn-based antibody recycling attributes to the NaV1.7 targeting function of the peptide warhead. Herein, we conjugated a GpTx-1 peptide to specific engineered cysteines in a carrier anti-2,4-dinitrophenol monoclonal antibody using polyethylene glycol linkers. The reactivity of 13 potential cysteine conjugation sites in the antibody scaffold was tuned using a model alkylating agent. Subsequent reactions with the peptide identified cysteine locations with the highest conversion to desired conjugates, which blocked NaV1.7 currents in whole cell electrophysiology. Variations in attachment site, linker, and peptide loading established design parameters for potency optimization. Antibody conjugation led to in vivo half-life extension by 130-fold relative to a nonconjugated GpTx-1 peptide and differential biodistribution to nerve fibers in wild-type but not NaV1.7 knockout mice. This study describes the optimization and application of antibody derivatization technology to functionally inhibit NaV1.7 in engineered and neuronal cells.


Subject(s)
Immunoconjugates/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Peptides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , HEK293 Cells , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Male , Mice , Models, Molecular , Peptides/chemistry , Peptides/pharmacokinetics , Tissue Distribution , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
2.
Acta Pharmacol Sin ; 28(7): 959-67, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17588331

ABSTRACT

AIM: The objectives of this study were to investigate the inhibitory action of verapamil on wild-type(WT) and mutation HERG K+ channel current (I(HERG)), and to determine whether mutations in the S6 region are important for the inhibition of I(HERG) by verapamil. METHODS: HERG channels (WT, Y652A, and F656A) were expressed in oocytes of Xenopus laevis and studied using the 2-electrode voltage- clamp technique. RESULTS: WT HERG is blocked in a concentration-dependent manner by verapamil (half-maximal inhibition concentration [IC(50)]=5.1 micromol/L), and the steady state activation and inactivation parameters are shifted to more negative values. However, mutation to Ala of Y652 and F656 located on the S6 domain produced 16-fold and 20-fold increases in IC(50) for IHERG blockade, respectively. Simultaneously, the steady state activation and inactivation parameters for Y652A are also shifted to more negative values in the presence of the blockers. CONCLUSION: Verapamil preferentially binds to and blocks open HERG channels. Tyr-652 and Phe-656, 2 aromatic amino-acid residues in the inner (S6) helix, are critical in the verapamil-binding site.


Subject(s)
Calcium Channel Blockers/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/chemistry , Verapamil/metabolism , Animals , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ion Channel Gating/drug effects , Oocytes/cytology , Oocytes/physiology , Patch-Clamp Techniques , Protein Conformation , Verapamil/pharmacology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...