Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631789

ABSTRACT

The grounding network is a significant component of substations, and the corrosion of its ground resistance is predominantly detected using the electromagnetic method. However, the application of electromagnetic methods for detecting corrosion within earthing networks has received relatively limited attention in research. Currently, the prevailing method utilizes electromagnetic techniques to identify the breakage points within the given earthing network. In this study, we propose a corrosion detection method for grounding networks based on the low-frequency electromagnetic method, which measures the resistance value between individual nodes of the network. Specifically, an excitation source signal of a predetermined frequency was transmitted to the measurement segment of the grounding network, which facilitated the direct measurement of the strength of the induced magnetic field above the center of the measuring conductor. The recorded electromagnetic data were subsequently uploaded to the host computer for data processing, and the computer interface was constructed based on a LABVIEW design. By leveraging the relationship between the induced electric potential, current strength, excitation source strength, and additional voltage detection devices, the resistance of the conductor under examination could be determined. Furthermore, the proposed method was tested under suitable conditions, and it demonstrated favorable results. Thus, the proposed method can serve as a foundation for developing electromagnetic testing instruments tailored to the investigated grounding network.

2.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992046

ABSTRACT

The vertical component magnetic field signal in the ground-airborne frequency domain electromagnetic (GAFDEM) method is detected by the air coil sensor, which is parallel to the ground. Unfortunately, the air coil sensor has low sensitivity in the low-frequency band, making it challenging to detect effective low-frequency signals and causing low accuracy and large error for interpreted deep apparent resistivity in actual detection. This work develops an optimized weight magnetic core coil sensor for GAFDEM. The cupped flux concentrator is used in the sensor to reduce the weight of the sensor while maintaining the magnetic gathering capacity of the core coil. The winding of the core coil is optimized to resemble the shape of a rugby ball, taking full advantage of the magnetic gathering capacity at the core center. Laboratory and field experiment results show that the developed optimized weight magnetic core coil sensor for the GAFDEM method is highly sensitive in the low-frequency band. Therefore, the detection results at depth are more accurate compared with those obtained using existing air coil sensors.

3.
Sensors (Basel) ; 22(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35957331

ABSTRACT

The grounding resistance of a substation is an important parameter that should be designed within a reasonable range to prevent operational accidents from damaging electrical equipment due to overvoltage and ensure the safe operation of an electrical system. However, simply and accurately measuring the grounding resistance of a substation has been a difficult problem faced by engineers and technicians for a long time. This paper proposes a method of denoising by applying the m-sequence correlation identification technology to the measurement of substation resistance. We established a grounding resistance model of a grounding grid and used LabVIEW to simulate it. Based on system identification and correlation function theory, pseudorandom signals or sinusoidal signals were used as excitation signals. The output results of the system were compared when pseudorandom signals and sinusoidal signals were used as excitation signals. It was verified that the grounding resistance value measured by a pseudorandom signal was closer to the actual value, which met the design requirements. Laboratory test results verify that the method of calculating grounding resistance based on the correlation analysis method is feasible.


Subject(s)
Electricity , Computer Simulation , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...