Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 91(2): 375-386, 2017 02.
Article in English | MEDLINE | ID: mdl-27745702

ABSTRACT

Cytokines IL-4 and IL-13 play important roles in polarization of macrophages/dendritic cells to an M2 phenotype, which is important for recovery from acute kidney injury. Both IL-4 and IL-13 activate JAK3/STAT6 signaling. In mice with diphtheria toxin receptor expression in proximal tubules (selective injury model), a relatively selective JAK3 inhibitor, tofacitinib, led to more severe kidney injury, delayed recovery from acute kidney injury, increased inflammatory M1 phenotype markers and decreased reparative M2 phenotype markers of macrophages/dendritic cells, and development of more severe renal fibrosis after diphtheria toxin administration. Similarly, there was delayed recovery and increased tubulointerstitial fibrosis in these diphtheria toxin-treated mice following tamoxifen-induced deletion of both IL-4 and IL-13, with increased levels of M1 and decreased levels of M2 markers in the macrophages/dendritic cells. Furthermore, deletion of IL-4 and IL-13 led to a decrease of tissue reparative M2a phenotype markers but had no effect on anti-inflammatory M2c phenotype markers. Deletion of IL-4 and IL-13 also inhibited recovery from ischemia-reperfusion injury in association with increased M1 and decreased M2 markers and promoted subsequent tubulointerstitial fibrosis. Thus, IL-4 and IL-13 are required to effectively polarize macrophages/dendritic cells to an M2a phenotype and to promote recovery from acute kidney injury.


Subject(s)
Acute Kidney Injury/metabolism , Cell Plasticity , Dendritic Cells/metabolism , Interleukin-13/metabolism , Interleukin-4/metabolism , Kidney/metabolism , Macrophages/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Dendritic Cells/pathology , Diphtheria Toxin , Disease Models, Animal , Fibrosis , Genotype , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-4/deficiency , Interleukin-4/genetics , Janus Kinase 3/metabolism , Kidney/pathology , Kidney/physiopathology , Macrophages/pathology , Male , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Knockout , Phenotype , Recovery of Function , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , STAT6 Transcription Factor/metabolism , Signal Transduction , Time Factors
2.
J Biol Chem ; 286(52): 44606-19, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22069332

ABSTRACT

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


Subject(s)
Circadian Clocks/physiology , Glycoproteins/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational/physiology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Glycoproteins/genetics , Glycosylation , Male , Mice , Mice, Transgenic , Muscle Proteins/genetics , Myocardium/cytology , Myocytes, Cardiac/cytology , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...