Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 10(1): 011910, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26958097

ABSTRACT

This paper presents a continuous glucose monitoring microsystem consisting of a three-electrode electrochemical sensor integrated into a microfluidic chip. The microfluidic chip, which was used to transdermally extract and collect subcutaneous interstitial fluid, was fabricated from five polydimethylsiloxane layers using micromolding techniques. The electrochemical sensor was integrated into the chip for continuous detection of glucose. Specifically, a single-layer graphene and gold nanoparticles (AuNPs) were decorated onto the working electrode (WE) of the sensor to construct a composite nanostructured surface and improve the resolution of the glucose measurements. Graphene was transferred onto the WE surface to improve the electroactive nature of the electrode to enable measurements of low levels of glucose. The AuNPs were directly electrodeposited onto the graphene layer to improve the electron transfer rate from the activity center of the enzyme to the electrode to enhance the sensitivity of the sensor. Glucose oxidase (GOx) was immobilized onto the composite nanostructured surface to specifically detect glucose. The factors required for AuNPs deposition and GOx immobilization were also investigated, and the optimized parameters were obtained. The experimental results displayed that the proposed sensor could precisely measure glucose in the linear range from 0 to 162 mg/dl with a detection limit of 1.44 mg/dl (S/N = 3). The proposed sensor exhibited the potential to detect hypoglycemia which is still a major challenge for continuous glucose monitoring in clinics. Unlike implantable glucose sensors, the wearable device enabled external continuous monitoring of glucose without interference from foreign body reaction and bioelectricity.

2.
Biosens Bioelectron ; 72: 370-5, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26022782

ABSTRACT

An implantable U-shaped fiber ATR sensor enhanced by silver nanoparticles on cylindrical surface was presented for continuous glucose monitoring to overcome the drawbacks of traditional glucose sensing technique based on enzyme electrodes. A U-shaped structure was addressed to increase effective optical length at limited implantable space to enhance the sensitivity of fiber ATR sensor. A novel method to fabricate silver nanoparticles on cylindrical surface of U-shaped fiber ATR sensor based on chemical reduction of its silver halide material directly without any preliminary nanoparticles synthesis and following covalent bond or self-assembly was proposed. Five glucose absorption wavelengths in the mid-infrared band were employed for specific glucose monitoring. The experimental results indicate that the sensitivity and resolution of the silver-nanoparticle-enhanced U-shaped fiber-optic ATR sensor are approximately three times those of a conventional one. The high sensitivity and low-noise performance makes it promising for in vivo glucose monitoring in the future clinical applications.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Fiber Optic Technology/instrumentation , Glucose/analysis , Metal Nanoparticles/chemistry , Silver/chemistry , Blood Glucose/analysis , Equipment Design , Humans , Metal Nanoparticles/ultrastructure , Optical Fibers , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...