Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697424

ABSTRACT

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Subject(s)
Fibroins , Recombinant Proteins , Fibroins/chemistry , Fibroins/biosynthesis , Fibroins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Nanostructures/chemistry , Fermentation , Saccharomycetales/metabolism , Saccharomycetales/genetics , Silk/chemistry , Silk/biosynthesis , Animals , Bombyx/metabolism , Bombyx/genetics
2.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786666

ABSTRACT

Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.

3.
Commun Biol ; 7(1): 375, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548869

ABSTRACT

Protein methylation is a commonly posttranslational modification of transcriptional regulators to fine-tune protein function, however, whether this regulation strategy participates in the regulation of lignocellulase synthesis and secretion in Trichoderma reesei remains unexplored. Here, a putative protein methyltransferase (TrSAM) is screened from a T. reesei mutant with the ability to express heterologous ß-glucosidase efficiently even under glucose repression. The deletion of its encoding gene trsam causes a significant increase of cellulase activities in all tested T. reesei strains, including transformants of expressing heterologous genes using cbh1 promotor. Further investigation confirms that TrSAM interacts with the cellulase negative regulator ACE1 via its amino acid residue Arg383, which causes a decrease in the ACE1-DNA binding affinity. The enzyme activity of a T. reesei strain harboring ACE1R383Q increases by 85.8%, whereas that of the strains with trsam or ace1 deletion increases by more than 100%. By contrast, the strain with ACE1R383K shows no difference to the parent strain. Taken together, our results demonstrate that TrSAM plays an important role in regulating the expression of cellulase and heterologous proteins initiated by cbh1 promotor through interacting with ACE1R383. Elimination and mutation of TrSAM and its downstream ACE1 alleviate the carbon catabolite repression (CCR) in expressing cellulase and heterologous protein in varying degrees. This provides a new solution for the exquisite modification of T. reesei chassis.


Subject(s)
Cellulase , Hypocreales , Cellulase/genetics , Cellulase/metabolism , Promoter Regions, Genetic , Mutation , Gene Expression
4.
Front Microbiol ; 15: 1337398, 2024.
Article in English | MEDLINE | ID: mdl-38414763

ABSTRACT

With the increasing sustainability challenges, synthetic biology is offering new possibilities for addressing the emerging problems through the cultivation and fermentation of mushrooms. In this perspective, we aim to provide an overview on the research and applications mushroom synthetic biology, emphasizing the need for increased attention and inclusion of this rapidly advancing field in future mushroom technology over China and other countries. By leveraging synthetic biology, mushrooms are expected to play a more versatile role in various area, including traditional fields like circular economy, human wellness and pharmaceutics, as well as emerging fields like vegan meat, mushroom-based materials and pollution abatement. We are confident that these efforts using synthetic biology strategies have the potential to strengthen our capacity to effectively address sustainable challenges, leading to the development of a more sustainable social economy and ecology.

5.
Reprod Sci ; 31(2): 430-440, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814201

ABSTRACT

Endometriosis is an immune chronic inflammatory disease, and there are currently no more effective drugs for treating endometriosis due to its unknown etiology. Salbutamol is a ß2-adrenergic receptor (ß2AR) agonist commonly used to treat asthma by selectively activating ß2 receptors on airway smooth muscle and leukocytes, exerting bronchial dilation and synergistic anti-inflammatory effects. In recent years, ß2AR agonists have been used in endometriosis studies, and we speculate that salbutamol may have a therapeutic effect on endometriosis. The purpose of this research was to explore the therapeutic effect of salbutamol on endometriosis mice. The mouse endometriosis model was established and treated with different doses of salbutamol. Endometrial lesions were harvested for pathological diagnosis, immunohistochemistry (IHC), Masson staining, and toluidine blue analysis. We found that the number and size of endometriotic lesions were all significantly decreased after 3 weeks of treatment with different doses of salbutamol on endometriosis model mice (P < 0.05). After Salbutamol treatment, the amount of mast cells (toluidine blue) and macrophages (F4/80) in the lesions as well as the expressions of interleukin (IL)-1ß, tumor necrosis factor (TNF)-ɑ, platelet-derived growth factor subunit B (PDGFB), CD31, transforming growth factor (TGF)-ß, Masson staining, BCL2, TUBB3, substance P (SP), and nerve growth factor (NGF) were significantly reduced (P < 0.05). These results suggested that salbutamol could effectively treat endometriosis in mice by reducing immune inflammatory cells and factors, angiogenesis, and fibrosis, increasing apoptosis of endometriotic lesions, and decreasing neurogenesis.


Subject(s)
Endometriosis , Humans , Female , Mice , Animals , Endometriosis/metabolism , Albuterol/pharmacology , Albuterol/therapeutic use , Tolonium Chloride , Substance P
7.
Front Microbiol ; 14: 1334993, 2023.
Article in English | MEDLINE | ID: mdl-38094637
8.
J Fungi (Basel) ; 9(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38132771

ABSTRACT

The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar 'Hunong No. 1'. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5'-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10-569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum.

9.
J Fungi (Basel) ; 9(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37888281

ABSTRACT

Edible fungi are generally defined as macrofungi with large fruiting bodies that may be consumed by humans and are commonly referred to as mushrooms [...].

10.
Int J Biol Sci ; 19(8): 2515-2530, 2023.
Article in English | MEDLINE | ID: mdl-37215998

ABSTRACT

Uterine leiomyoma is the most common gynecological tumor in reproductive women. Tumor-host interface is a complex ecosystem with intimate cell-cell communications and a critical scenario for tumor pathogenesis and progression. The pseudocapsule is the main tumor-host interface of uterine leiomyoma, but its cellular spatial disposition and gene expression are poorly explored. This study mapped the cellular architecture and corresponding gene profiles of the leiomyoma and its surrounding pseudocapsule by integrating spatial transcriptomics and single-nucleus RNA-sequencing at the first time. Here, we reported that estrogen receptor alpha and progesterone receptor mediated the occurrence and development of uterine leiomyoma and that estrogen receptor beta involved in the angiogenesis, which explained the effectiveness of hormonotherapy. Therapeutic targets including ERK1/ERK2 pathway and IGF1-IGF1R were found and might be applied for non-hormonal therapy of uterine leiomyoma. Furthermore, the injection of prostaglandin E2 was initially presented for bleeding control during myomectomy, injection site should be located at the junction between pseudocapsule and leiomyoma, and surrounding pseudocapsule should not be eliminated. Collectively, a single-cell and spatially resolved atlas of human uterine leiomyoma and its surrounding pseudocapsule was established. The results revealed potentially feasible strategies for hormonotherapy, non-hormonal targeted therapy and bleeding control during myomectomy.


Subject(s)
Leiomyoma , Uterine Myomectomy , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Ecosystem , Transcriptome/genetics , Leiomyoma/drug therapy , Leiomyoma/genetics , Leiomyoma/metabolism , Uterine Myomectomy/methods
11.
Bioresour Technol ; 376: 128888, 2023 May.
Article in English | MEDLINE | ID: mdl-36925076

ABSTRACT

Low ambient temperature poses a challenge for rice straw-silage processing in cold climate regions, as cold limits enzyme and microbial activity in silages. Here, a novel cold-active cellobiohydrolase (VvCBHI-I) was isolated from Volvariella volvacea, which exhibited outstanding cellobiohydrolase activity at 10-30 °C. The crude cellulase complex in the VvCBHI-I-expressing transformant T1 retained 50% relative activity at 10 °C, while the wildtype Trichoderma reesei showed <5% of the activity. VvCBHI-I greatly improved the saccharification efficiency of the cellulase complex with pretreated rice straw as substrate at 10 °C. In rice straw silage, pH (<4.5) and lactic acid content (>4.6%) remained stable after 15-day ensiling with the cellulase complex from T1 and Lactobacillus plantarum. Moreover, the proportions of cellulose and hemicellulose decreased to 29.84% ± 0.15% and 21.25% ± 0.26% of the dried material. This demonstrates the crucial potential of mushroom-derived cold-active cellobiohydrolases in successful ensiling in cold regions.


Subject(s)
Agaricales , Cellulase , Cellulase/metabolism , Cellulose 1,4-beta-Cellobiosidase , Temperature , Fermentation , Silage/analysis , Agaricales/metabolism
12.
Microbiol Spectr ; : e0527222, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916925

ABSTRACT

Fruiting body formation is the most important developmental event in the edible mushroom life cycle; however, the genetic regulation of this process is not well understood. Pleurotus eryngii is a widely cultivated mushroom with high economic value. The mating of two monokaryons carrying compatible A and B mating-type genes is required for the development of fruiting bodies in P. eryngii. In this study, we showed that the monokaryons of P. eryngii transformed with compatible homeodomain (A mating type) and pheromone (B mating type) genes can complete fruiting body development but cannot form basidiospores. Transcriptional analyses revealed that expression of endogenous homeodomain and pheromone receptor genes and mating signaling pathways were activated by transferred homeodomain and pheromone genes in the transformants. Our findings provide a novel model for studying fruiting body development, which may accelerate the genetic breeding of edible mushrooms in the future. IMPORTANCE Fruiting bodies of edible mushrooms have high nutritional value. However, the fruiting body development of mushrooms is not well understood, and thus, many wild edible mushrooms of economic importance cannot be cultivated artificially. Moreover, variety among cultivatable mushrooms has improved marginally. Under natural conditions, fruiting body development can be initiated only in a dikaryon, the sexual mycelium obtained from mating two compatible monokaryons. The present work showed induction of fruiting body development in Pleurotus eryngii monokaryons by genetic manipulation. Gene expression analyses revealed key genes and signaling pathways involved in the fruiting body development of P. eryngii.

13.
Front Immunol ; 14: 1106771, 2023.
Article in English | MEDLINE | ID: mdl-36845134

ABSTRACT

Pain is one of the main clinical symptoms of endometriosis, but its underlying mechanism is still not clear. Recent studies have shown that the secretory mediators of mast cells activated by estrogen are involved in the pathogenesis of endometriosis-related pain, but how estrogen-induced mast cell mediators are involved in endometriosis-related pain remains unclear. Here, mast cells were found to be increased in the ovarian endometriotic lesions of patients. They were also closely located closely to the nerve fibers in the ovarian endometriotic lesions from of patients with pain symptoms. Moreover, fibroblast growth factor 2 (FGF2)-positive mast cells were upregulated in endometriotic lesions. The concentration of FGF2 in ascites and the protein level of fibroblast growth factor receptor 1 (FGFR1) were higher in patients with endometriosis than in those without endometriosis, and they were correlated with pain symptoms. In vitro, estrogen could promote the secretion of FGF2 through G-protein-coupled estrogen receptor 30 (GPR30) via the MEK/ERK pathway in rodent mast cells. Estrogen-stimulated mast cells enhanced the concentration of FGF2 in endometriotic lesions and aggravated endometriosis-related pain in vivo. Targeted inhibition of the FGF2 receptor significantly restrained the neurite outgrowth and calcium influx in dorsal root ganglion (DRG) cells. Administration of FGFR1 inhibitor remarkably elevated the mechanical pain threshold (MPT) and prolonged the heat source latency (HSL) in a rat model of endometriosis. These results suggested that the up-regulated production of FGF2 by mast cells through non-classic estrogen receptor GPR30 plays a vital role in the pathogenesis of endometriosis-related pain.


Subject(s)
Endometriosis , Ovarian Neoplasms , Female , Humans , Rats , Animals , Endometriosis/pathology , Fibroblast Growth Factor 2 , Receptors, Estrogen , Mast Cells/metabolism , Estrogens/pharmacology , Pain Threshold , Ovarian Neoplasms/pathology
14.
Trends Biotechnol ; 41(4): 480-483, 2023 04.
Article in English | MEDLINE | ID: mdl-36307231

ABSTRACT

Recent advances in synthetic biology have transformed mushroom farming from a focus on traditional cultivation to comprehensive applications based on cutting-edge biotechnologies. Synthetic biology has promising applications in this field, including precision breeding, mining biosynthetic gene clusters, developing mushroom chassis cells, and constructing cell factories for high value-added products.


Subject(s)
Agaricales , Synthetic Biology , Agaricales/genetics , Plant Breeding , Biotechnology , Agriculture
15.
mSystems ; 7(6): e0104222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36468854

ABSTRACT

Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.


Subject(s)
Cellulase , Transcription Factors , Virulence/genetics , Transcription Factors/genetics , Cellulase/genetics , Fungal Proteins/genetics , Botrytis/genetics , Plants/metabolism , Gene Expression Regulation, Fungal
16.
J Fungi (Basel) ; 8(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36294565

ABSTRACT

CRISPR/Cas9 systems were established in some edible fungi based on in vivo expressed Cas9 and guide RNA. Compared with those systems, the in vitro assembled Cas9 and sgRNA ribonucleoprotein complexes (RNPs) have more advantages, but only a few examples were reported, and the editing efficiency is relatively low. In this study, we developed and optimized a CRISPR/Cas9 genome-editing method based on in vitro assembled ribonucleoprotein complexes in the mushroom Flammulina filiformis. The surfactant Triton X-100 played a critical role in the optimal method, and the targeting efficiency of the genomic editing reached 100% on a selective medium containing 5-FOA. This study is the first to use an RNP complex delivery to establish a CRISPR/Cas9 genome-editing system in F. filiformis. Moreover, compared with other methods, this method avoids the use of any foreign DNA, thus saving time and labor when it comes to plasmid construction.

17.
J Fungi (Basel) ; 8(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35887452

ABSTRACT

Hypsizygus marmoreus is a representative edible mushroom with low-temperature fruiting after a long postripening (LFLP). Clarifying the mechanism of LFLP and applying a rigorous low-temperature-limited process will optimize the mushroom cultivation process. This study performed an integrative multi-omics analysis of the molecular mechanism of LFLP in combination with genetic, physiological, and cultivation confirmation. The results showed that the amino acid content was increased during LFLP, mainly arginine. pH analysis showed acidification in the postripening stage and alkalization in the substrates of the reproductive growth stage. An enzyme activity test confirmed the increased enzyme activity of arginase and citrate synthase in the postripening stage. Weighted gene coexpression network analysis of the transcriptome and metabolomics indicated that pH variation is correlated mainly with changes in citrate and arginine. Multi-omics reveals a straightforward way of providing enriched materials for amino acid biosynthesis, namely, synergistically elevating citric acid and arginine through enhanced activity of the arginine synthesis branch pathway in the citrate cycle. Our study confirmed that GCN2 mediated metabolic adaptation by enhancing protein translation, highlighting its regulatory role during LFLP. Exogenously added citric acid and arginine shortened the postripening period by 10 days and increased the fruiting body yield by 10.2~15.5%. This research sheds light on the molecular mechanism of LFLP in H. marmoreus and highlights the promising application of nutrient accumulation in high-efficiency cultivation.

18.
Microb Biotechnol ; 15(10): 2521-2532, 2022 10.
Article in English | MEDLINE | ID: mdl-35908288

ABSTRACT

Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.


Subject(s)
CRISPR-Cas Systems , Trichoderma , Biotechnology , Gene Editing , Trichoderma/genetics
19.
Synth Syst Biotechnol ; 7(2): 664-670, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35224234

ABSTRACT

Claviceps purpurea produces many pharmacologically important ergot alkaloids (EAS), which are widely used to treat migraine and hypertension and to aid childbirth. Although an EAS biosynthetic cluster of C. purpurea has been discovered more than 20 years ago, the complete biosynthetic pathway of EAS has not been fully characterized until now. The main obstacle to elucidating this pathway and strain modification is the lack of efficient genome-editing tools for C. purpurea. The conventional gene manipulation method for C. purpurea relies on homologous recombination (HR), although the efficiency of HR in C. purpurea is very low (∼1-5%). Consequently, the disruption of target genes is laborious and time-consuming. Although CRISPR/Cas9 genome-editing methods based on in vivo Cas9 expression and gRNA transcription have been reported recently, their gene-disruption efficiency is still very low. Here, we developed an efficient genome-editing system in C. purpurea based on in vitro assembled CRISPR/Cas9 gRNA ribonucleoprotein complexes. As proof of principle, three target genes were efficiently knocked out using this CRISPR/Cas9 ribonucleoprotein complex-mediated HR system, with editing efficiencies ranging from 50% to 100%. Inactivation of the three genes, which are closely related to uridine biosynthesis (ura5), hypha morphology (rac), and EAS production (easA), resulted in a uridine auxotrophic mutant, a mutant with a drastically different phenotype in axenic culture, and a mutant that did not produce EAS, respectively. Our ribonucleoprotein-based genome-editing system has a great advantage over conventional and in vivo CRISPR/Cas9 methods for genome editing in C. purpurea, which will greatly facilitate elucidation of the EAS biosynthetic pathway and other future basic and applied research on C. purpurea.

20.
ACS Synth Biol ; 11(1): 486-496, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34928572

ABSTRACT

Trichoderma reesei has an extremely high capacity for synthesizing and secreting proteins, thus exhibiting promise as an expression platform for heterologous proteins. However, T. reesei secretes large amounts of native proteins, which hinders its widespread application for heterologous protein production. Here, we designed and built a series of T. reesei chassis using an iterative gene deletion approach based on an efficient genome editing system. Donor DNAs with specially designed construct facilitated screening of positive deletion strains without ectopic insertion. Finally, marker-free T. reesei chassis with lower rates of native protein secretion and low levels of extracellular protease activity were constructed after 11 consecutive rounds of gene deletion. Higher production levels of three heterologous proteins─a bacterial xylanase XYL7, a fungal immunomodulatory protein LZ8, and the human serum albumin HSA─were achieved with these chassis using the cbh1 promoter. It is possible that diverse high-value proteins might be produced at a high yield using this engineered platform.


Subject(s)
Hypocreales , Trichoderma , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Hypocreales/genetics , Hypocreales/metabolism , Promoter Regions, Genetic , Trichoderma/genetics , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...