Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 9(2): 285-294, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38063807

ABSTRACT

Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.

2.
Nanomicro Lett ; 16(1): 14, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955844

ABSTRACT

The recent wave of the artificial intelligence (AI) revolution has aroused unprecedented interest in the intelligentialize of human society. As an essential component that bridges the physical world and digital signals, flexible sensors are evolving from a single sensing element to a smarter system, which is capable of highly efficient acquisition, analysis, and even perception of vast, multifaceted data. While challenging from a manual perspective, the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm (machine learning) and the framework (artificial synapses) level. This review presents the recent progress of the emerging AI-driven, intelligent flexible sensing systems. The basic concept of machine learning and artificial synapses are introduced. The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed, which significantly advances the applications such as flexible sensory systems, soft/humanoid robotics, and human activity monitoring. As two of the most profound innovations in the twenty-first century, the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.

3.
J Colloid Interface Sci ; 649: 290-301, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37352560

ABSTRACT

HYPOTHESIS: Most droplets on high-efficiency condensing surfaces have radii of less than 100 µm, but conventional droplet transport methods (such as wettability-gradient surfaces and structural-curvature-gradient surfaces) that rely on the unbalanced force of three-phase lines can only transport millimeter-sized droplets efficiently. Regulating high-speed directional transport of condensate droplets is still challenging. Therefore, we present a method for condensate droplet transportation, based on the reaction force of the superhydrophobic saw-tooth surfaces to the liquid bridge, the condensate droplets could be transported at high speed and over long distances. EXPERIMENTS: The superhydrophobic saw-tooth surfaces are fabricated by femtosecond laser ablation and chemical etching. Condensation experiments and luminescent particle characterization experiments on different surfaces are conducted. Aided by the theoretical analysis, we illustrate the remarkable performance of condensate droplet transportation on saw-tooth surfaces. FINDINGS: Compared with conventional methods, our method improves the transport velocity and relative transport distance by 1-2 orders of magnitude and achieves directional transport of the smallest condensate droplet of about 2 µm. Furthermore, the superhydrophobic saw-tooth surfaces enable multi-hop directional jumping of condensate droplets, leading to cross-scale increases in transport distances from microns to decimeters.

4.
Mater Horiz ; 10(7): 2525-2534, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37067478

ABSTRACT

The booming development of electronic skins necessitates stretchable electrodes and flexible sensors that exhibit distinctly opposite requirements of electromechanical properties, both of which are difficult to be fulfilled on a single material. Here, a pufferfish-inspired, interlayer regulation strategy is proposed that realizes the above opposite properties in simple metal films, exhibiting either ultra-stretchability (295% strain) or sensitivity (maximum GF: ∼5500) on demand. It is revealed that the stretchability of the intrinsically strain-sensitive metal films can be improved by ∼20-fold via regulating the surface morphology of the inserted interlayer, accompanied by an intriguing transition in film cracking behavior from cut-through cracks to network patterns. By featuring these two antithetical but valuable properties, common metal films can be applied as diverse sensors and stretchable electrodes in electronic skins, showing application prospects in healthcare monitoring, human-machine interaction, and engineering services. Our proposed strategy substantially advances the application of metal film conductors in flexible electronics and broadens the horizons for developing more sophisticated electronic skins by interlayer engineering.

5.
ACS Appl Mater Interfaces ; 15(1): 1563-1573, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36560862

ABSTRACT

Field-effect transistor (FET) devices with multi-gate coupled structures usually exhibit special electrical properties and are suitable for fabricating multifunctional devices. Among them, the 1D nanowire gate configuration has become a promising gate design to tailor 2D FET performances. However, due to possible short circuiting induced by nanowire contact and the high requirement for precision manipulation, the integration of multi-nanowires as gates in a single 2D electronic system remains a grand challenge. Herein, local laser--thinned multiple core-shell SiC@SiO2 nanowires are successfully integrated into MoS2 transistors as multi-gates for active control of extendable logic applications. Nanowire gates (NGs) locally enhance the carrier transportation, and the use of multiple NGs can achieve designed band structures to tune the performance of the device. For core-shell structures, a semiconducting core is used to introduce a gate bias, and the insulating shell provides protection against short circuiting between NGs, facilitating nanowire assembly. Furthermore, a global control gate is introduced to co-tune the overall electrical characteristics, while active control of logic devices and extendable inputs are achieved based on this model. This work proposes a novel nanowire multi-gate configuration, which provides possibilities for localized, precise control of band structures and the fabrication of highly integrated, multifunctional, and controllable nano-devices.

6.
Adv Mater ; 35(8): e2208568, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36482821

ABSTRACT

Future electronic skin systems require stretchable conductors and low-temperature integration of external components, which remains challenging for traditional metal films. Herein, a bioinspired design concept is reported to endow metal films with 200% stretchability as well as room-temperature integration capability with diverse components. It is revealed that by controllable implantation of defects, distinctive venation-mimicking cracking modes can be induced in strained metal films, leading to profound stretchability regulation. An intriguing exponential-to-linear transition of the film electromechanical performance is observed, which is elucidated by a unified model covering the essence of all modes. Combined with room-temperature integration capability, an integrated electronic skin is constructed with metal films serving as stretchable electrodes, diverse sensors, and "tapes" to attach subcomponents, showing prospects in helping disabled people. This one-step, defect implantation strategy is applicable to common metals without special substrate treatments, which enables fascinating ultrastretchable metal film conductors with low-temperature integration capability to spark more sophisticated flexible electronic systems.

7.
Mater Horiz ; 10(2): 524-535, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36426652

ABSTRACT

The integration of 2D materials with other dimensional materials opens up rich possibilities for both fundamental physics and exotic nanodevices. However, current mixed-dimensional heterostructures often suffer from interfacial contact issues and environment-induced degradation, which severely limits their performance in electronics/optoelectronics. Herein, we demonstrate a novel BN-encapsulated CuO/MoS2 2D-1D van der Waals heterostructure photodetector with an ultrahigh photoresponsivity which is 10-fold higher than its previous 2D-1D counterparts. The interfacial contact state and photodetection capabilities of 2D-1D heterojunctions are significantly improved via femtosecond laser irradiation induced MoS2 wrapping and contamination removal. These h-BN protected devices show highly sensitive, gate-tunable and robust photoelectronic properties. By controlling the gate and bias voltages, the device can achieve a photoresponsivity as high as 2500 A W-1 in the forward bias mode, or achieve a high detectivity of 6.5 × 1011 Jones and a typical rise time of 2.5 ms at reverse bias. Moreover, h-BN encapsulation effectively protects the mixed-dimensional photodetector from electrical depletion by gas molecules such as O2 and H2O during fs laser treatment or the operation process, thus greatly improving the stability and service life in harsh environments. This work provides a new way for the further development of high performance, low cost, and robust mixed-dimensional heterostructure photodetectors by femtosecond laser contact engineering.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296847

ABSTRACT

Laser fabrication of metallic superhydrophobic surfaces (SHSs) for anti-frosting has recently attracted considerable attention. Effective anti-frosting SHSs require the efficient removal of condensed microdroplets through self-propelled droplet jumping, which is strongly influenced by the surface morphology. However, detailed analyses of the condensate self-removal capability of laser-structured surfaces are limited, and guidelines for laser processing parameter control for fabricating rationally structured SHSs for anti-frosting have not yet been established. Herein, a series of nanostructured copper-zinc alloy SHSs are facilely constructed through ultrafast laser processing. The surface morphology can be properly tuned by adjusting the laser processing parameters. The relationship between the surface morphologies and condensate self-removal capability is investigated, and a guideline for laser processing parameterization for fabricating optimal anti-frosting SHSs is established. After 120 min of the frosting test, the optimized surface exhibits less than 70% frost coverage because the remarkably enhanced condensate self-removal capability reduces the water accumulation amount and frost propagation speed (<1 µm/s). Additionally, the material adaptability of the proposed technique is validated by extending this methodology to other metals and metal alloys. This study provides valuable and instructive insights into the design and optimization of metallic anti-frosting SHSs by ultrafast laser processing.

9.
ACS Appl Mater Interfaces ; 13(45): 54246-54257, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726368

ABSTRACT

2D materials exhibit intriguing electrical and optical properties, making them promising candidates for next-generation nanoelectronic devices. However, the high contact resistance of 2D materials to electrode material often limits the ultimate performance and potential of 2D materials and devices. In this work, we demonstrate a localized femtosecond (fs) laser irradiation process to substantially minimize the resistance of MoS2-metal contacts. A reduction of the contact resistance exceeding three orders of magnitude is achieved for mechanically exfoliated MoS2, which remarkably improves the overall FET performance. The underlying mechanisms of resistance reduction are the removal of organic contamination induced by the transfer process, as well as the lowering of Schottky barrier resistance (RSB) attributed to interface Fermi level pinning (FLP) by Au diffusion, and the lowering of interlayer resistance (Rint) due to interlayer coupling enhancement by Au intercalation under fs laser irradiation. By taking advantage of the improved MoS2-metal contact behavior, a high-performance MoS2 photodetector was developed with a photoresponsivity of 68.8 A W-1 at quite a low Vds of 0.5 V, which is ∼80 times higher than the pristine multilayer photodetector. This contamination-free, site-specific, and universal photonic fabrication technique provides an effective tool for the integration of complex 2D devices, and the mechanism of MoS2-metal interface modification reveals a new pathway to engineer the 2D material-metal interface.

10.
Angew Chem Int Ed Engl ; 60(26): 14307-14312, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33793046

ABSTRACT

Bioinspired dynamic structural color has great potential for use in dynamic displays, sensors, cryptography, and camouflage. However, it is quite rare for artificial structural color devices to withstand thousands of cycles. Male hummingbird's crowns and gorgets are brightly colored, demonstrating frequent color switching that is induced by regulating the orientation of the feathers through movement of skin or joints. Inspired by this unique structural color modulation, we demonstrate a flexible, mechanically triggered color switchable sheet based on a photonic crystal (PhC)-coated polydimethylsiloxane (PDMS) kirigami (PhC-PDMS kirigami) made by laser cutting. Finite element modeling (FEM) simulation reveals that the thickness of PDMS kirigami and the chamfer at the incision induced by laser cutting both dominate the out-of-plane deformation through in-plane stretching. The bioinspired PhC-PDMS kirigami shows precisely programmable structural color and keeps the color very well after recycling over 10 000 times. This bioinspired PhC-PDMS kirigami also shows excellent viewability even in bright sunlight, high readability, robust functionality, technical flexibility, and mechanical durability, which are readily exploitable for applications, such as chromic mechanical monitors for the sports industry or for medical applications, wearable camouflage, and security systems.

11.
Proc Natl Acad Sci U S A ; 118(18)2021 May 04.
Article in English | MEDLINE | ID: mdl-33903253

ABSTRACT

The inhibition of condensation freezing under extreme conditions (i.e., ultra-low temperature and high humidity) remains a daunting challenge in the field of anti-icing. As water vapor easily condensates or desublimates and melted water refreezes instantly, these cause significant performance decrease of most anti-icing surfaces at such extreme conditions. Herein, inspired by wheat leaves, an effective condensate self-removing solar anti-icing/frosting surface (CR-SAS) is fabricated using ultrafast pulsed laser deposition technology, which exhibits synergistic effects of enhanced condensate self-removal and efficient solar anti-icing. The superblack CR-SAS displays superior anti-reflection and photothermal conversion performance, benefiting from the light trapping effect in the micro/nano hierarchical structures and the thermoplasmonic effect of the iron oxide nanoparticles. Meanwhile, the CR-SAS displays superhydrophobicity to condensed water, which can be instantly shed off from the surface before freezing through self-propelled droplet jumping, thus leading to a continuously refreshed dry area available for sunlight absorption and photothermal conversion. Under one-sun illumination, the CR-SAS can be maintained ice free even under an ambient environment of -50 °C ultra-low temperature and extremely high humidity (ice supersaturation degree of ∼260). The excellent environmental versatility, mechanical durability, and material adaptability make CR-SAS a promising anti-icing candidate for broad practical applications even in harsh environments.

12.
Adv Mater ; 32(52): e2003722, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33185944

ABSTRACT

The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.

13.
Nanoscale ; 12(37): 19413-19419, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32955077

ABSTRACT

Silver (Ag)-based materials have shown great application potential in the oxygen reduction reaction (ORR) and hydrogen peroxide (H2O2) detection. The porous structures of Ag have attracted a lot of research interest due to their large specific surface area and high electrochemical activity. In this work, nanoporous Ag structures composed of nano-sized particles were prepared by a one-step pulsed laser deposition (PLD) under controlled background gas pressure. The porous PLD-Ag showed a high ORR performance (Eonset: 1.007 V vs. RHE, E1/2: 0.863 V vs. RHE), high sensitivity (613.1 µA cm-2 mM-1 at -0.2 V vs. SCE) and selectivity for H2O2 detection. The PLD technique provided a new, yet universal approach to producing high-performance, metal-based electrochemical electrodes.

14.
Materials (Basel) ; 13(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604900

ABSTRACT

To further improve the mechanical properties of thermoplastic resin in additive manufacturing (AM), this paper presents a novel method to directly and quantitatively place the short fibers (SFs) between two printing process of resin layers. The printed composite parts with SFs between the layers was reinforced. The effects of single-layer fiber content, multi-layer fiber content and the length of fibers on the mechanical properties of printed specimens were studied. The distribution of fibers and quality of interlayer bonding were assessed using mechanical property testing and microstructure examination. The results showed that the tensile strength of the single-layered specimen with 0.5 wt% interlayered SFs increased by 18.82%. However, when the content of SFs continued to increase, the mechanical properties declined because of the increasing interlayered gap and the poor bonding quality. In addition, when the interlayered SFs length was 0.5-1 mm, the best reinforcement was obtained. To improve the interfacial bonding quality between the fiber and the resin, post-treatment and laser-assisted preheating printing was used. This method is effective for the enhancement of the interfacial bonding to obtain better mechanical properties. The research proves that adding SFs by placement can reduce the wear and breakage of the fibers compared to the conventional forming process. Therefore, the precise control of the length and content of SFs was realized in the specimen. In summary, SFs placement combined with post-treatment and laser-assisted preheating is a new method in AM to improve the performance of thermoplastic resin.

15.
Soft Matter ; 16(18): 4462-4476, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32323690

ABSTRACT

The accretion of frost on heat exchanging surfaces through the freezing of condensed water in cold and humid environments significantly reduces the operating efficiency of air-source heat pumps, refrigerators and other cryogenic equipment. The construction of hierarchical micro-nanostructured SHSs, with the ability to timely remove condensed water before freezing via self-propelled droplet jumping, serves as a promising anti-frosting strategy. However, the actual relationship between microstructural features and water removal capability through droplet jumping is still not clear, hindering the further optimization of anti-frosting SHSs. Herein, a series of aluminum SHSs with different micro-cone arrays is designed and fabricated via ultrafast laser processing and chemical etching. The effect of microstructural features on water removal capability is elucidated by statistically analyzing the condensation process. As compared to nanostructured SHSs with the micro-cone size ranging from 10 to 40 µm, the water removal through droplet jumping is remarkably enhanced from 3.42 g m-2 to as much as 13.91 g m-2 over 10 minutes of condensation experiments due to the effective transition of condensed microdroplets from the initial high-adhesion partial wetting (PW) state to low-adhesion Cassie state, leading to significantly reduced water accumulation and improved anti-frosting performance. However, a further increase in the micro-cone size decreased the water removal amount due to greater droplet adhesion to the surface, which results in higher chances for immobile coalescence and the formation of large droplets. Herein, by rationally tuning the size scale of the structured micro-cones, the optimal SHSs display the least water accumulation and render excellent frosting delay of over 90 minutes under simulated harsh operating conditions.

16.
ACS Appl Mater Interfaces ; 12(14): 16743-16752, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32174102

ABSTRACT

Ag-Cu bimetallic nanoparticles, combining the advantages of both Ag and Cu, are a promising material for power electronic packaging. In this work, a supersaturated Ag-7.3 wt % Cu alloy nanoparticle film was developed by using pulsed laser deposition. Unlike Cu nanoparticles, the supersaturated Ag-Cu alloy nanoparticles can conduct bonding in air without the assistance of a reduction agent. The shear strength was >20 MPa when the bonding temperature reached 300 °C, which was above the die shear standard (MIL-STD-883 K, 7.8 MPa) and compatible with the typical die attach process. The Cu separating behavior was accompanied by the bonding process at 250-400 °C, which was discussed systematically. Neck formation was delayed to about 250 °C because of the hindering effect of the thin oxide shell of the Ag-Cu alloy. The necking networks provide volume diffusion paths despite the growth of surface oxide, resulting in compact densification. The bondline under the SiC die consisted of a porous Ag-Cu alloy matrix with a dispersed secondary phase of Cu2O/CuO, which is supposed to have improved electrochemical migration resistance.

17.
Nanoscale ; 12(9): 5618-5626, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32100779

ABSTRACT

Single nanowire memory units are of particular interest in the design of high-density nanoelectronic circuits, but the performance due to weak contact state remains a major problem. In this paper, bonding between core/shell SiC/SiO2 nanowire and Au electrodes can be improved via local contact engineering with femtosecond (fs) laser irradiation. An optimized heterojunction (Au-SiO2-SiC) is possible since plasmonic enhanced optical absorption can be localized at the metal-oxide (Au-SiO2) interface. Electron transport across the barrier and charge accumulation at the oxide-semiconductor (SiO2-SiC) interface are improved in nanowire circuits. A fast and stable resistance change can be achieved after only one biasing cycle ('write') and the written state can be read/extracted at a low voltage (∼ 0.5 V). Unlike other as-built nanowire circuits, the resistance state can be retained for 10 min in the absence of external power, indicating that these devices can be used for short-term memory units. High current tolerance is also provided in the circuit by the surface oxide shell which acts to protect the inner SiC core. The current density carried by the single SiC/SiO2 nanowire circuit can be as high as ∼3 × 106 A cm-2 before break down, and that breakdown occurs as a two-stage process.

18.
ACS Appl Mater Interfaces ; 12(6): 7805-7814, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31972085

ABSTRACT

Preventing condensation frosting is crucial for air conditioning units, refrigeration systems, and other cryogenic equipment. Coalescence-induced self-propelled jumping of condensed microdroplets on superhydrophobic surfaces serves as a favorable strategy against condensation frosting. In previous reports, efforts were dedicated to enhance the efficiency of self-propelled jumping by constructing appropriate surface structures on superhydrophobic surfaces. However, the incorporation of surface structures results in larger area available for condensation to occur, leading to an increase in total amount of condensed water on the surface and partially counteracts the effect of promoted jumping on removing condensed water from the surface. In this paper, we focus on the competing effects between condensing and self-propelled jumping on promoting and preventing water accumulation, respectively. A series of micro- and nanostructured superhydrophobic surfaces are designed and prepared. The condensation process and self-propelled jumping behavior of microdroplets on the surfaces are investigated. Thousands of jumping events are statistically analyzed to acquire a comprehensive understanding of antifrosting potential of superhydrophobic surfaces with self-propelled jumping of condensed microdroplets. Further frosting experiments shows that the surface with the lowest amount of accumulated water exhibits the best antifrosting performance, which validates our design strategy. This work offers new insights into the rational design and fabrication of antifrosting materials.

19.
Microsyst Nanoeng ; 6: 64, 2020.
Article in English | MEDLINE | ID: mdl-34567675

ABSTRACT

Physical and chemical technologies have been continuously progressing advances in neuroscience research. The development of research tools for closed-loop control and monitoring neural activities in behaving animals is highly desirable. In this paper, we introduce a wirelessly operated, miniaturized microprobe system for optical interrogation and neurochemical sensing in the deep brain. Via epitaxial liftoff and transfer printing, microscale light-emitting diodes (micro-LEDs) as light sources and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-coated diamond films as electrochemical sensors are vertically assembled to form implantable optoelectrochemical probes for real-time optogenetic stimulation and dopamine detection capabilities. A customized, lightweight circuit module is employed for untethered, remote signal control, and data acquisition. After the probe is injected into the ventral tegmental area (VTA) of freely behaving mice, in vivo experiments clearly demonstrate the utilities of the multifunctional optoelectrochemical microprobe system for optogenetic interference of place preferences and detection of dopamine release. The presented options for material and device integrations provide a practical route to simultaneous optical control and electrochemical sensing of complex nervous systems.

20.
Materials (Basel) ; 12(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31085993

ABSTRACT

When nanoparticle conductive ink is used for printing interconnects, cracks and pores are common defects that deteriorate the electrical conductivity of the printed circuits. Influences of the ink solvent, the solid fraction of the ink, the pre-printing treatment and the sintering parameters on the interconnect morphology and conductivity were investigated. It was found that the impacts of all these factors coupled with each other throughout the whole procedure, from the pre-printing to the post-printing processes, and led to a structure inheritance effect. An optimum process route was developed for producing crack-free interconnects by a single-run direct-writing approach using home-made nano-copper ink. A weak gel was promoted in the ink before printing in the presence of long-chain polymers and bridging molecules by mechanical agitation. The fully developed gel network prevented the phase separation during ink extrusion and crack formations during drying. With the reducing agents in the ink and slow evaporation of the ink solvent, compact packing and neck joining of copper nanoparticles were obtained after a two-step sintering process. The crack-free interconnects successfully produced have a surface roughness smaller than 1.5 µm and the square resistances as low as 0.01 Ω/□.

SELECTION OF CITATIONS
SEARCH DETAIL
...