Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2403444, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934554

ABSTRACT

Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. This field is largely inspired by the adaptability, fault tolerance, robustness, and energy efficiency inherent in biological senses, driving the development of numerous innovative digitalization techniques. Among these techniques, neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry, and overcoming the absence of standardization. Looking ahead, the ambition is to realize biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components, bridging the gap between organic and synthetic realms. This article is protected by copyright. All rights reserved.

2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 661-670, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621870

ABSTRACT

Scorpions, a group of oldest animals with wide distribution in the world, have a long history of medicinal use. Scorpio, the dried body of Buthus martensii, is a rare animal medicine mainly used for the treatment of liver diseases, spasm, and convulsions in children in China. The venom has been considered as the active substance of scorpions. However, little is known about the small molecules in the venom of scorpions. According to the articles published in recent years, scorpions contain amino acids, fatty acids, steroids, and alkaloids, which endow scorpions with antimicrobial, anticoagulant, metabolism-regulating, and antitumor activities. This paper summarizes the small molecule chemical components and pharmacological activities of scorpions, with a view to providing valuable information for the discovery of new active molecules and the clinical use of scorpions.


Subject(s)
Animals, Poisonous , Anti-Infective Agents , Scorpion Venoms , Animals , Child , Humans , Peptides/chemistry , Scorpions/chemistry , Scorpions/metabolism , DNA, Complementary , Scorpion Venoms/pharmacology
3.
Neuroimage ; 284: 120455, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37952779

ABSTRACT

Real-time fMRI (rt-fMRI) neurofeedback (NF) training is a novel non-invasive technique for volitional brain modulation. Given the important role of the anterior insula (AI) in human cognitive and affective processes, it has become one of the most investigated regions in rt-fMRI studies. Most rt-fMRI insula studies employed emotional recall/imagery as the regulation strategy, which may be less effective for psychiatric disorders characterized by altered emotional processing. The present study thus aimed to examine the feasibility of a novel interoceptive strategy based on heartbeat detection in rt-fMRI guided AI regulation and its associated behavioral changes using a randomized double-blind, sham feedback-controlled between-subject design. 66 participants were recruited and randomly assigned to receive either NF from the left AI (LAI) or sham feedback from a control region while using the interoceptive strategy. N = 57 participants were included in the final data analyses. Empathic and interoceptive pre-post training changes were collected as behavioral measures of NF training effects. Results showed that participants in the NF group exhibited stronger LAI activity than the control group with LAI activity being positively correlated with interoceptive accuracy following NF training, although there were no significant increases of LAI activity over training sessions. Importantly, ability of LAI regulation could be maintained in a transfer session without feedback. Successful LAI regulation was associated with strengthened functional connectivity of the LAI with cognitive control, memory and learning, and salience/interoceptive networks. The present study demonstrated for the first time the efficacy of a novel regulation strategy based on interoceptive processing in up-regulating LAI activity. Our findings also provide proof of concept for the translational potential of this strategy in rt-fMRI AI regulation of psychiatric disorders characterized by altered emotional processing.


Subject(s)
Magnetic Resonance Imaging , Neurofeedback , Humans , Magnetic Resonance Imaging/methods , Neurofeedback/methods , Emotions/physiology , Brain/physiology , Empathy , Brain Mapping/methods
4.
Chin J Nat Med ; 21(6): 454-458, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37407176

ABSTRACT

Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.


Subject(s)
Lysobacter , Streptomyces , Lysobacter/genetics , Lysobacter/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Lipopeptides/genetics , Lipopeptides/metabolism , Polyketide Synthases/genetics , Multigene Family
5.
Elife ; 122023 05 12.
Article in English | MEDLINE | ID: mdl-37171081

ABSTRACT

Background: Social touch constitutes a key component of human social relationships, although in some conditions with social dysfunction, such as autism, it can be perceived as unpleasant. We have previously shown that intranasal administration of oxytocin facilitates the pleasantness of social touch and activation of brain reward and social processing regions, although it is unclear if it influences responses to gentle stroking touch mediated by cutaneous C-touch fibers or pressure touch mediated by other types of fibers. Additionally, it is unclear whether endogenous oxytocin acts via direct entry into the brain or by increased peripheral blood concentrations. Methods: In a randomized controlled design, we compared effects of intranasal (direct entry into the brain and increased peripheral concentrations) and oral (only peripheral increases) oxytocin on behavioral and neural responses to social touch targeting C-touch (gentle-stroking) or other (medium pressure without stroking) cutaneous receptors. Results: Although both types of touch were perceived as pleasant, intranasal and oral oxytocin equivalently enhanced pleasantness ratings and responses of reward, orbitofrontal cortex, and social processing, superior temporal sulcus, regions only to gentle-stroking not medium pressure touch. Furthermore, increased blood oxytocin concentrations predicted the pleasantness of gentle stroking touch. The specificity of neural effects of oxytocin on C-touch targeted gentle stroking touch were confirmed by time-course extraction and classification analysis. Conclusions: Increased peripheral concentrations of oxytocin primarily modulate its behavioral and neural responses to gentle social touch mediated by C-touch fibers. Findings have potential implications for using oxytocin therapeutically in conditions where social touch is unpleasant. Funding: Key Technological Projects of Guangdong Province grant 2018B030335001. Clinical trial number: NCT05265806.


Subject(s)
Touch Perception , Touch , Humans , Emotions/physiology , Oxytocin/pharmacology , Physical Stimulation , Skin , Touch/physiology , Touch Perception/physiology
6.
Article in English | MEDLINE | ID: mdl-36623581

ABSTRACT

Major depression (MDD) and generalized anxiety disorder (GAD) have become one of the leading global causes of disability and both are characterized by marked interpersonal and social impairments. However, despite high comorbidity and overlapping social-emotional deficits, it remains unclear whether MDD and GAD share a common neural basis during interpersonal processing. In the present study, we combined an emotional face processing paradigm with fMRI and dimensional and categorical analyses in a sample of unmedicated MDD and GAD patients (N = 72) as well as healthy controls (N = 35). No group differences were found in categorical analyses. However, the dimensional analyses revealed that dorsolateral prefrontal cortex (dlPFC) reactivity to sad facial expressions was positively associated with depression symptom load, yet negatively associated with anxiety symptom load in the entire sample. On the network level depression symptom load was positively associated with functional connectivity between the bilateral amygdala and a widespread network including the anterior cingulate and insular cortex. Together, these findings suggest that the dlPFC - engaged in cognitive and emotional processing - exhibits symptom- and emotion-specific alteration during interpersonal processing. Dysregulated communication between the amygdala and core regions of the salience network may represent depression-specific neural dysregulations.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/diagnostic imaging , Emotions/physiology , Anxiety/diagnostic imaging , Anxiety Disorders , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Facial Expression
7.
Org Lett ; 24(36): 6515-6519, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36053065

ABSTRACT

The structural diversity of polycyclic tetramate macrolactams (PoTeMs) are mainly generated by the cyclases and cytochrome P450s (CYPs). The PoTeM cluster sah in Saccharopolyspora hirsuta harboring two CYP genes was combinatorially reassembled and heterologously expressed in Streptomyces. As a result, six new cytotoxic PoTeMs, sahamides A-F (1-6), were discovered, and 1-3 are the first examples of oxidized one-ring PoTeMs. Remarkably, SahE represents the first CYP performing oxidative modification on the ornithine moiety of PoTeMs.


Subject(s)
Streptomyces , Cytochrome P-450 Enzyme System/metabolism , Ornithine/metabolism , Oxidation-Reduction , Streptomyces/chemistry
8.
Comput Math Methods Med ; 2022: 8127055, 2022.
Article in English | MEDLINE | ID: mdl-35991132

ABSTRACT

Under the global pandemic of COVID-19, public health facilities, such as hospitals, are required to readjust, design, and plan a safe movement flow of people to meet the social distance rules and quarantine COVID-19 and the non-COVID-19 patients to prevent cross-infection. However, readjustments to separate patients have significantly reduced the maximum throughput of public health facilities, worsening already scarce public health resources. Therefore, this paper proposes throughput maximization algorithms based on the one-way street problem which meets the requirements of social distance rules. First, the floor plan of a hospital is transformed into a graph, each node is traversed by breadth-first search. Then, this paper considers patients' node pair sets as different set unions, the direction of edges, and the color of links based on DFS-XOR algorithm are designed to distinguish the paths of COVID-19 and non-COVID-19 patients. Finally, this paper utilizes minimum shared link algorithms to determine the minimized sharing links between paths linking different set unions and components. The throughput is maximized by reducing the number of shared links and alternating links. The results indicate that compared with the brute force algorithms, the algorithms proposed in this paper significantly improve the maximum throughput.


Subject(s)
COVID-19 , Algorithms , COVID-19/epidemiology , Hospitals , Humans , Pandemics/prevention & control , Quarantine
9.
Entropy (Basel) ; 24(3)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35327909

ABSTRACT

With the development of Internet technology, short texts have gradually become the main medium for people to obtain information and communicate. Short text reduces the threshold of information production and reading by virtue of its short length, which is in line with the trend of fragmented reading in the context of the current fast-paced life. In addition, short texts contain emojis to make the communication immersive. However, short-text content means it contains relatively little information, which is not conducive to the analysis of sentiment characteristics. Therefore, this paper proposes a sentiment classification method based on the blending of emoticons and short-text content. Emoticons and short-text content are transformed into vectors, and the corresponding word vector and emoticon vector are connected into a sentencing matrix in turn. The sentence matrix is input into a convolution neural network classification model for classification. The results indicate that, compared with existing methods, the proposed method improves the accuracy of analysis.

10.
J Sci Food Agric ; 100(9): 3658-3665, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32246462

ABSTRACT

BACKGROUND: Citrus fiber is a main component in the peel of citrus and contains natural dietary fiber. It is often used as a functional additive to improve the texture or nutritional property of food. It is also widely used to reduce the content of absorbable fat in sausages and other meat products, and to improve food stability as an emulsifier. In this research, the dynamic rheological properties (linear and non-linear) of citrus peel fiber/corn oil (CF/CO) emulsion system under high pressure homogenization (HPH) treatment was investigated. RESULT: Rheological results illustrated HPH treatment significantly increased the apparent viscosity of the emulsion, reduced the activation energy of the emulsion and distinctly improved the viscoelasticity of the emulsion. Meanwhile, HPH treatment increased the linear viscoelastic region of the sample, and the behavior of the emulsion converted from strain thinning (without HPH treatment) to weak strain overshoot (with HPH treatment). Lissajous curves indicated the viscosity of the sample increased first and then decreased with strain increasing and the third harmonic contributed much more to the first harmonic compared with the fifth harmonic. Chebyshev stress decomposition revealed that, as strain increased, the samples with HPH treatment showed internal-cycle strain hardening behavior first, then turned to internal-cycle softening behavior. CONCLUSION: HPH treatment can significantly improve the processing performance of CF/CO emulsion as well as the stability against large periodic oscillations in food processing. © 2020 Society of Chemical Industry.


Subject(s)
Citrus/chemistry , Corn Oil/chemistry , Emulsions/chemistry , Food Handling/methods , Plant Extracts/chemistry , Corn Oil/isolation & purification , Dietary Fiber/analysis , Emulsions/isolation & purification , Food Handling/instrumentation , Plant Extracts/isolation & purification , Pressure , Rheology , Viscosity
11.
Environ Technol ; 33(15-16): 1761-6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22439563

ABSTRACT

The reductive degradation of nitrobenzene (NB) by iron-carbon micro-electrolysis packing was investigated. The influence of initial NB concentration, pH value and packing amount on the removal rate of NB were studied. The results showed that the reaction with packing followed the pseudo-first-order reaction. The optimum pH was 3.0 for the degradation of NB in the tested pH ranges of 3-9 and the optimum packing amount was 40 g/200 ml. The flow-through column packed with packing was designed to remove NB from simulated wastewater for approximately 68 days. The removal rate was over 90% within initial periods. It could be seen that after running for 68 days, the packing still had good performance after the long-term column experiment. In addition, the changes of the packing surfaces morphologies and matters before, during and after the column experiment were analysed by scanning electron microscopy in conjunction with energy-dispersion spectroscopy (EDS).


Subject(s)
Nitrobenzenes/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Electrolysis , Iron/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...