Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Environ Res ; : 119297, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824986

ABSTRACT

Emulsified vegetable oil (EVO), as a novel green slow-releasing substrate, has performed great potential in subsurface bioremediation due to its slow release and longevity. Nevertheless, the long time it takes to initiate this process still exposed some limitations. Herein, multiple enzyme-based EVOs (EN-EVOs) were developed to enhance the quick-acting effect in nitrate-contaminated bioremediation. This study demonstrated that EN-EVOs loaded with cellulose (c-EVO) and protein enzymes (p-EVO) performed best, not only did not change the advantages of traditional EVO, but also optimized the stability and particle size to the level of 0.8‒0.9 and 247.95‒252.25 nm, respectively. Nitrate (NO3-N) degradation further confirmed the superiority of c-EVO in rapidly initiating degradation and achieving stable denitrification. Compared with traditional EVO, the maximum start-up efficiency and the rapid achieving stable denitrification efficiency were improved by 37.6% and 1.71 times, respectively. In such situation, the corresponding NO3-N removal efficiency, kinetics rate constant (k1), and half-life period (t1/2) reached as high as 85.39%, as quick as 1.079 d-1, and as short as 0.64 d after 30-day cultivation. Meanwhile, the rapid conversion efficiency of NO2-N was observed (k2 = 0.083 d-1). High-throughput 16S rRNA gene sequencing indicated that the quick-acting process of NO3-N reduction coupled to c-EVO was mediated by microbial reducers (e.g., Ralstonia, Gulbenkiania, and Sphingobacterium) with regulations of narG, nirS and norB genes. Microorganisms with these genes could achieve quick-acting not only by enhancing microbial activity and the synthesis and metabolism of volatile fatty acids, but also by reducing the production and accumulation of loosely bound-extracellular polymeric substances (LB-EPS). These findings advance our understanding on fast-acting of NO3-N degradation supported by c-EVO and also offer a promising direction for groundwater remediation.

2.
EBioMedicine ; 104: 105155, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744109

ABSTRACT

BACKGROUND: Despite numerous studies having evaluated the associations between human papillomavirus (HPV) infection and risk of specific cancers other than anogenital tract and oropharyngeal, the findings are inconsistent and the quality of evidence has not been systematically quantified. We aimed to summarise the existing evidence as well as to evaluate the strength and credibility of these associations. METHODS: We conducted an umbrella review of systematic reviews and meta-analyses of observational studies. PubMed, EMBASE, and Web of Science were searched from inception to March 2024. Studies with systematic reviews and meta-analyses that examined associations between HPV or HPV-associated genotypes infection and specific cancers were eligible for this review. The quality of the methodology was evaluated using A Measurement Tool to Assess systematic Reviews (AMSTAR). The credibility of the evidence was assessed using GRADE. The protocol was preregistered with PROSPERO (CRD42023439070). FINDINGS: The umbrella review identified 31 eligible studies reporting 87 associations with meta-analytic estimates, including 1191 individual studies with 336,195 participants. Of those, 29 (93.5%) studies were rated as over moderate quality by AMSTAR. Only one association indicating HPV-18 infection associated with an increased risk of breast cancer (odds ratio [OR] = 3.48, 95% confidence interval [CI] = 2.24-5.41) was graded as convincing evidence. There were five unique outcomes identified as highly suggestive evidence, including HPV infection increased the risk of oral squamous cell carcinoma (OR = 7.03, 95% CI = 3.87-12.76), oesophageal cancer (OR = 3.32, 95% CI = 2.54-4.34), oesophageal squamous cell carcinoma (OR = 2.69, 95% CI = 2.05-3.54), lung cancer (OR = 3.60, 95% CI = 2.59-5.01), and breast cancer (OR = 6.26, 95% CI = 4.35-9.00). According to GRADE, one association was classified as high, indicating that compared with the controls in normal tissues, HPV infection was associated with an increased risk of breast cancer. INTERPRETATION: The umbrella review synthesised up-to-date observational evidence on HPV infection with the risk of breast cancer, oral squamous cell carcinoma, oesophageal cancer, oesophageal squamous cell carcinoma, and lung cancer. Further larger prospective cohort studies are needed to verify the associations, providing public health recommendations for prevention of disease. FUNDING: National Key Research and Development Program of China, Natural Science Foundation of China, Outstanding Scientific Fund of Shengjing Hospital of China Medical University, and 345 Talent Project of Shengjing Hospital of China Medical University.

3.
J Environ Manage ; 360: 121139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744212

ABSTRACT

For the simultaneous energetic utilization of corn stalk and azo-dye contaminated wastewater, an ECMO-like integrated reactor was come up to achieve the biogas production and azo-dye degradation during anaerobic digestion (AD). Methyl orange (MO) was selected as the model compound for azo-dye. The ECMO-like reactor included AD main reactor with a spray device and solid-liquid separation components, integrated with an aeration reactor for biogas slurry. Methane yields of corn stalks (100.82 mL/g VS) were highest in the ECMO-like reactor, compared with reactors without aeration. As a stable metabolite, 4-aminobenzenesulfonic acid (4-ABA) was detected in AD, while it was assumed that the metabolites can be further transformed in the ECMO-like reactor (R3), due to the 4-ABA removal efficiency as 92.87 % after 35 days' digestion. Class Alphaproteobacteria and Clostridia were assumed as functional microbes responding to aeration. Overall, this ECMO-like integrated reactor provided a novel biotechnology strategy for agricultural and azo dye waste treatment.


Subject(s)
Azo Compounds , Bioreactors , Zea mays , Anaerobiosis , Biofuels , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Methane/metabolism , Wastewater/chemistry
4.
Front Public Health ; 12: 1400680, 2024.
Article in English | MEDLINE | ID: mdl-38813414

ABSTRACT

Objectives: Model prediction of radioactivity levels around nuclear facilities is a useful tool for assessing human health risks and environmental impacts. We aim to develop a model for forecasting radioactivity levels in the environment and food around the world's first AP 1000 nuclear power unit. Methods: In this work, we report a pilot study using time-series radioactivity monitoring data to establish Autoregressive Integrated Moving Average (ARIMA) models for predicting radioactivity levels. The models were screened by Bayesian Information Criterion (BIC), and the model accuracy was evaluated by mean absolute percentage error (MAPE). Results: The optimal models, ARIMA (0, 0, 0) × (0, 1, 1)4, and ARIMA (4, 0, 1) were used to predict activity concentrations of 90Sr in food and cumulative ambient dose (CAD), respectively. From the first quarter (Q1) to the fourth quarter (Q4) of 2023, the predicted values of 90Sr in food and CAD were 0.067-0.77 Bq/kg, and 0.055-0.133 mSv, respectively. The model prediction results were in good agreement with the observation values, with MAPEs of 21.4 and 22.4%, respectively. From Q1 to Q4 of 2024, the predicted values of 90Sr in food and CAD were 0.067-0.77 Bq/kg and 0.067-0.129 mSv, respectively, which were comparable to values reported elsewhere. Conclusion: The ARIMA models developed in this study showed good short-term predictability, and can be used for dynamic analysis and prediction of radioactivity levels in environment and food around Sanmen Nuclear Power Plant.


Subject(s)
Bayes Theorem , Nuclear Power Plants , Radiation Monitoring , Humans , Pilot Projects , Radiation Monitoring/methods , Radioactivity , Food Contamination, Radioactive/analysis , Forecasting , Models, Theoretical
5.
Sci Total Environ ; 933: 173048, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740204

ABSTRACT

Microplastics (MPs) are ubiquitous in freshwater sediments, raising concern about their potential impacts on ecosystem services. However, the specific impacts of microbiota mediated by MPs in sediment and plastisphere compartments on P availability remain elusive. This investigation conducted a series of microcosm experiments utilizing eutrophic lake sediment amended with fuel-based polyethylene terephthalate (PET), bio-based polylactic acid (PLA) MPs, and a natural cobblestone substrate to unravel their effects. The findings highlighted that MPs induced alterations in bacterial communities in both sediment and plastisphere, consequently modifying P availabilities at the sediment-water interface (SWI). In comparison to non-biodegradable PET, biodegradable PLA MPs presented higher proportions of specific bacteria and functional genes associated with P profiles, such as Firmicutes, Ignavibacteriota, and P mineralizing genes in the sediment and plastisphere. This, in turn, elevated the levels of soluble reactive P in the porewater by 54.19 % (0-1 cm), 55.81 % (1-3 cm), and 18.24 % (3-5 cm), respectively. Additionally, PLA obviously altered P immobilization capacity and bioavailability, increasing the organic P fraction. Whereas, inert cobblestone exhibited negligible influence on P biogeochemical processes during the incubation. Moreover, the biofilm communities and those in the surrounding sediment specifically contributed to the changes in P profiles at the SWI. The functional genes associated with P profiles in the sediment mainly concentrate on P mineralization and P uptake/transport. In the plastisphere, P activation genes are obviously affected under MP exposure. This study fills the knowledge gap concerning the repercussions of MPs on ecosystem services.


Subject(s)
Geologic Sediments , Microbiota , Microplastics , Phosphorus , Water Pollutants, Chemical , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microbiota/drug effects , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Polyesters , Bacteria , Lakes/microbiology , Lakes/chemistry , Polyethylene Terephthalates , Ecosystem
6.
Langmuir ; 40(22): 11390-11400, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776219

ABSTRACT

In this work, we report a facile emulsion swelling route to prepare surface-wrinkled silica-polystyrene (SiO2-PS) composite particles. Submicrometer-sized, near-spherical SiO2-PS composite particles were first synthesized by dispersion polymerization of styrene in an ethanol/water mixture, and then, surface-wrinkled SiO2-PS particles were obtained by swelling the SiO2-PS particles with a toluene/water emulsion and subsequent drying. It is emphasized that no surface pretreatment on the SiO2-PS composite particles is required for the formation of the wrinkled surface, and the most striking feature is that the surface-wrinkled particle was not deformed from a single near-spherical SiO2-PS composite particle but from many ones. The influence of various swelling parameters including toluene/particle mass ratio, surfactant concentration, stirring rate, swelling temperature, swelling time, and silica size on the morphology of the composite particles was studied. This method represents a new paradigm for the preparation of concave polymer colloids.

7.
Nat Commun ; 15(1): 2896, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575592

ABSTRACT

The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.

8.
Exp Ther Med ; 27(5): 221, 2024 May.
Article in English | MEDLINE | ID: mdl-38590563

ABSTRACT

Ischemic cardiomyopathy (ICM) is a serious cardiac disease with a very high mortality rate worldwide, which causes myocardial ischemia and hypoxia as the main damage. Further understanding of the underlying pathological processes of cardiomyocyte injury is key to the development of cardioprotective strategies. Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of lipid hydroperoxides to lethal levels, resulting in oxidative damage to the cell membrane. The current understanding of the role and regulation of ferroptosis in ICM is still limited, especially in the absence of evidence from large-scale transcriptomic data. Through comprehensive bioinformatics analysis of human ICM transcriptome data obtained from the Gene Expression Omnibus database, the present study identified differentially expressed ferroptosis-related genes (DEFRGs) in ICM. Subsequently, their potential biological mechanisms and cross-talk were analyzed, and hub genes were identified by constructing protein-protein interaction networks. Ferroptosis features such as reactive oxygen species generation, changes in ferroptosis marker proteins, iron ion aggregation and lipid oxidation, were identified in the H9c2 anoxic reoxygenation injury model. Finally, the diagnostic ability of Gap junction alpha-1 (GJA1), Solute carrier family 40 member 1 (SLC40A1), Alpha-synuclein (SNCA) were identified through receiver operating characteristic curves and the expression of DEFRGs was verified in an in vitro model. Furthermore, potential drugs (retinoic acid) that could regulate ICM ferroptosis were predicted based on key DEFRGs. The present article presents new insights into the role of ferroptosis in ICM, investigating the regulatory role of ferroptosis in the pathological process of ICM and advocating for ferroptosis as a potential novel therapeutic target for ICM based on evidence from the ICM transcriptome.

9.
PLoS One ; 19(4): e0301632, 2024.
Article in English | MEDLINE | ID: mdl-38669287

ABSTRACT

The development of digital technology and the sharing economy has extended corporations' innovative activities beyond the corporation's boundaries, so it has become more urgent to govern the lack of social responsibility and alienation of platform corporations from the perspective of social agents. First, the platform's CSR classification and social responsibility governance's main content are analyzed in this research. Then, this study uses government agencies, platform corporations, users, and the public as governance subjects and compares governance decisions with and without public and user oversight. Finally, the optimal balance strategy for each governing subject, the optimal trajectory of governance volume, and the trajectory of total revenue are obtained. The study found that: 1) Public and user supervision can improve the governance volume while encourage the governance motivation of government agencies and platform corporations. 2) The level of user supervision effort has a greater impact on the total governance revenue than public supervision. 3) The revenue of the system and the governance volume are greater in a centralized decision-making process, indicating that those involved should co-operate in governance based on the principle of mutual benefit. 4) The platform corporation has an incompatible but unified relationship between its social duty and financial success.


Subject(s)
Social Responsibility , Humans , Decision Making , Government Agencies/organization & administration
10.
Article in English | MEDLINE | ID: mdl-38613579

ABSTRACT

PURPOSE: Although urgent orbital decompression surgery for sight-threatening Graves' orbitopathy unresponsive to available medical treatments continues to evolve, post-operative new-onset or worsened pre-operative strabismus or diplopia remains a significant complication. At present, the optimal surgical technique remains debatable. Here, we sought to compare long-term outcomes after balanced medial-lateral wall versus selective 3-wall decompression as an urgent treatment for unresponsive sight-threatening GO. METHODS: This retrospective study examined the post-operative outcome of 102 eyes (57 patients) that underwent urgent orbital decompression for sight-threatening GO. Treatment effectiveness was measured by visual acuity, proptosis, perimetry, and strabismus/diplopia, while fundus findings were detected by fundus color photography and optical coherence tomography and followed up for more than 12 months. RESULTS: Fifty-seven patients (102 orbits) with an average age of 52.7 ± 10.2 years were evaluated. Balanced medial-lateral wall (BMLW-OD) or selective 3-wall decompression(S3W-OD) were performed in 54 and 48 eyes, respectively. Twelve months after orbital decompression, all parameters significantly improved in both groups, including best-corrected visual acuity (BCVA), mean defect of visual field (VF-MD), pattern standard deviation of visual field (VF-PSD), and proptosis (all P < 0.01). However, new-onset esotropia occurred in 25.8% and 3.8% of patients who underwent BMLW-OD surgery or S3W-OD, respectively. Moreover, 6.5% and 38.5% of patients improved after decompression in the medial-lateral wall decompression group and the selective 3-wall decompression group, respectively. CONCLUSIONS: We demonstrated that S3W-OD provides a lower rate of new-onset strabismus/diplopia as compared with BMLW-OD surgery, while still allowing for satisfactory visual outcomes. TRIAL REGISTRATION NUMBER:  : NCT05627401. Date of registration: November 25, 2022.

11.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38561102

ABSTRACT

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Animals , Mice , Myocytes, Cardiac , Resveratrol/pharmacology , Voltage-Dependent Anion Channel 1 , Ischemia , Hypoxia , Myocardial Reperfusion Injury/prevention & control , Reperfusion
12.
J Hazard Mater ; 469: 134047, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492392

ABSTRACT

Microplastics (MPs) have attracted increasing attention due to their ubiquitous occurrence in freshwater sediments and the detrimental effects on benthic invertebrates. However, a clear understanding of their downstream impacts on ecosystem services is still lacking. This study examines the effects of bio-based polylactic acid (PLA), fuel-based polyethylene terephthalate (PET), and biofilm-covered PET (BPET) MPs on the bioturbator chironomid larvae (Tanypus chinensis), and the influence on phosphorus (P) profiles in microcosms. The changes in biochemical responses and metabolic pathways indicated that MPs disrupted energy synthesis by causing intestinal blockage and oxidative stress in T. chinensis, leading to energy depletion and impaired bioturbation activity. The impairment further resulted in enhanced sedimentary P immobilization. For larval treatments, the internal-P loadings were respectively 11.4%, 8.6%, and 9.0% higher in the PLA, PET, and BPET groups compared to the non-MP control. Furthermore, the influence of bioturbation on P profiles was MP-type dependent. Both BPET and PLA treatments displayed more obvious impacts on P profiles compared to PET due to the changes in MP bioavailability or sediment microenvironment. This study connects individual physiological responses to broader ecosystem services, showing that MPs alter P biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics , Water , Phosphorus , Ecosystem , Geologic Sediments , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Polyethylene Terephthalates , Larva
13.
Dalton Trans ; 53(12): 5665-5675, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445301

ABSTRACT

The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and µ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, µ2-OH-, and µ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.

14.
Food Chem X ; 22: 101243, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38444554

ABSTRACT

This work aims to evaluate the effects of the operation of Qinshan nuclear Power Plant (QNPP) on tritium (3H) and carbon-14 (14C) levels in seafood and assess the health risks caused by seafood consumption. Five kinds of seafood, including marine fish, prawn, razor clam, crabs, and seaweed, were collected from QNPP and the sea around Hangzhou Bay. The activity concentrations of tissue free water tritium (TFWT), organically bound tritium (OBT) and 14C were determined, respectively, and the annual intake and annual effective dose (AED) were calculated. The results showed that the TFWT, OBT, and 14C activity concentrations of the seafood in the surrounding area of QNPP ranged from 2.00 to 74.75 Bq/L, <1.04 to 19.68 Bq/L and 0.09 to 0.17 Bq/g·C, respectively. The TFWT, OBT, and 14C activity concentrations of the seafood in Hangzhou Bay ranged from 1.36 to 10.55 Bq/L, 1.08 to 6.78 Bq/L and 0.07 to 0.13 Bq/g·C, respectively. The differences were not statistically significant. The total AED from 3H and 14C due to the seafood consumption for the residents in the surrounding of QNPP and Hangzhou Bay were 1.96 × 10-4 and 1.61 × 10-4 mSv/year, respectively. The results showed that the operation of QNPP had no obvious effect on 3H and 14C accumulation in seafood, and the dose burden of population was low.

15.
Virulence ; 15(1): 2319962, 2024 12.
Article in English | MEDLINE | ID: mdl-38380669

ABSTRACT

Persistent human papillomavirus HPV infection is a necessary but insufficient condition for cervical cancer. Microorganisms are crucial environmental factors in cancers susceptibility and progression, recently attracting considerable attention. This study aimed to determine the infection status and relationship between high-risk HPV (HR-HPV) and lower genital tract infectious pathogens in cervical cancer and its precursors. From a retrospective and a prospective cohort analysis, Escherichia coli (E. coli) dominated the pathogens isolated from cervical discharges, and an isolation rate uptrend has been shown recently. HPV16 and E. coli's coinfection rate gradually increased with the severity of cervical intraepithelial neoplasia. The adhesion and invasion abilities of the isolated E. coli to HPV16-positive SiHa cells were evaluated in vitro. The TCGA database and cervical tissues samples analysis showed that IL-10 was upregulated in cervical cancer. IL-10 expression levels increased in tissue samples with the severity of cervical cancer and its precursors with HPV16 and E. coli coinfection. Although no significant changes in IL-10 production were observed in the co-culture supernatant, we hypothesized that Treg immune cells in the tumour microenvironment might be responsible for the local IL-10 upregulation, according to our data showing Foxp3 upregulation and an upward trend with the cervical intraepithelial neoplasia grading to cancer and tumours with E. coli and HPV16 coinfection. Our data provide insights into the possible role of E. coli in cervical cancer progression and suggest that the application of HPV and E. coli screening programs may be an effective strategy to relieve the burden of cervical cancer and its precursor lesions.


Subject(s)
Coinfection , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Interleukin-10/genetics , Human papillomavirus 16/genetics , Escherichia coli/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Retrospective Studies , Prospective Studies , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/pathology , Tumor Microenvironment
16.
Oncol Lett ; 27(3): 131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38362233

ABSTRACT

Immune checkpoint inhibitors (ICIs) combined with platinum-containing chemotherapy are recommended as the standard first-line treatment for non-small cell lung cancer (NSCLC). However, specific prognostic markers for this combination therapy are yet to be identified. Evaluation of circulating tumor cells (CTCs) and cell surface programmed death-ligand 1 (PD-L1) exhibits potential in predicting the efficacy of the aforementioned combination therapy. Thus, the present study aimed to evaluate the prognostic value of CTC PD-L1 testing and other clinical characteristics in patients with NSCLC treated with combination therapy as first-line treatment. In total, 40 patients with advanced NSCLC were included in the present study, and all patients underwent CTC PD-L1 testing at initial diagnosis to determine the association between CTC PD-L1 and tissue PD-L1. The prognostic value of CTC PD-L1 and the baseline characteristics of 26 patients with NSCLC were analyzed, and the prognostic values of changes in CTC PD-L1 and baseline characteristics during 6 months of treatment were further explored. Results of the present study demonstrated that there was no association between CTC PD-L1 and tissue PD-L1 levels. After 6 months of combination therapy, tumor shrinkage, CYFA19 levels and treatment maintenance were associated with progression-free survival (PFS) of patients. Notably, CTC PD-L1 and tissue PD-L1 levels, TNM stage, nutritional score, inflammation score and other blood indicators were not associated with PFS. In conclusion, the evaluation of CTCs and CTC PD-L1 suggested that undetectable CTCs at 6 months of NSCLC treatment are associated with a good prognosis. In addition, negative CTC PD-L1 expression may change to positive CTC PD-L1 expression in line with disease progression, and this may be indicative of poor prognosis.

17.
Sci Total Environ ; 918: 170742, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38336062

ABSTRACT

Nitrate (NO3-N), as one of the ubiquitous contaminants in groundwater worldwide, has posed a serious threat to public health and the ecological environment. Despite extensive research on its genesis, little is known about the differences in the genesis of NO3-N pollution across different concentrations. Herein, a study of NO3-N pollution concentration classification was conducted using the Shaying River Basin as a typical area, followed by examining the genesis differences across different pollution classifications. Results demonstrated that three classifications (0-9.98 mg/L, 10.14-27.44 mg/L, and 28.34-136.30 mg/L) were effectively identified for NO3-N pollution using Jenks natural breaks method. Random forest exhibited superior performance in describing NO3-N pollution and was thereby affirmed as the optimal explanatory method. With this method coupling SEMs, the genesis of different NO3-N pollution classifications was proven to be significantly different. Specifically, strongly reducing conditions represented by Mn2+, Eh, and NO2-N played a dominant role in causing residual NO3-N at low levels. Manure and sewage (represented by Cl-) leaching into groundwater through precipitation is mainly responsible for NO3-N in the 10-30 mg/L classification, with a cumulative contribution rate exceeding 80 %. NO3-N concentrations >30 mg/L are primarily caused by the anthropogenic loads stemming from manure, sewage, and agricultural fertilization (represented by Cl- and K+) infiltrating under precipitation in vulnerable hydrogeological conditions. Pathway analysis based on standardized effect and significance further confirmed the rationality and reliability of the above results. The findings will provide more accurate information for policymakers in groundwater resource management to implement effective strategies to mitigate NO3-N pollution.

18.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38400292

ABSTRACT

In recent years, advancements in deep Convolutional Neural Networks (CNNs) have brought about a paradigm shift in the realm of image super-resolution (SR). While augmenting the depth and breadth of CNNs can indeed enhance network performance, it often comes at the expense of heightened computational demands and greater memory usage, which can restrict practical deployment. To mitigate this challenge, we have incorporated a technique called factorized convolution and introduced the efficient Cross-Scale Interaction Block (CSIB). CSIB employs a dual-branch structure, with one branch extracting local features and the other capturing global features. Interaction operations take place in the middle of this dual-branch structure, facilitating the integration of cross-scale contextual information. To further refine the aggregated contextual information, we designed an Efficient Large Kernel Attention (ELKA) using large convolutional kernels and a gating mechanism. By stacking CSIBs, we have created a lightweight cross-scale interaction network for image super-resolution named "CSINet". This innovative approach significantly reduces computational costs while maintaining performance, providing an efficient solution for practical applications. The experimental results convincingly demonstrate that our CSINet surpasses the majority of the state-of-the-art lightweight super-resolution techniques used on widely recognized benchmark datasets. Moreover, our smaller model, CSINet-S, shows an excellent performance record on lightweight super-resolution benchmarks with extremely low parameters and Multi-Adds (e.g., 33.82 dB@Set14 × 2 with only 248 K parameters).

19.
Cell Signal ; 117: 111071, 2024 05.
Article in English | MEDLINE | ID: mdl-38295895

ABSTRACT

RSA, recurrent spontaneous abortion, often causes serious physical damage and psychological pressure in reproductive women with unclarified pathogenesis. Abnormal function of decidual cells and aberrant DNA methylation have been reported to cause RSA, but their association remains unclear. Here, we integrated transcriptome, DNA methylome, and scRNA-seq to clarify the regulatory relationship between DNA methylation and decidual cells in RSA. We found that DNA methylation mainly influenced the function of decidual macrophages (DMs), of which four hub genes, HLA-A, HLA-F, SQSTM1/P62, and Interferon regulatory factor 7 (IRF7), related to 22 hypomethylated CpG sites, regulated 16 hub pathways to participate in RSA pathogenesis. In particular, using transcription factor analysis, it is suggested that the upregulation of IRF7 transcription was associated with enhanced recruitment of the transcription factor STAT1 by the hypomethylated promoter region of IRF7. As the current research on DNA methylation of macrophages in the uterine microenvironment of RSA is still blank, our systematic picture of abnormal DNA methylation in regulating DM function provides new insights into the role of DNA methylation in RSA occurrence, which may aid in further prevention and treatment of RSA.


Subject(s)
Abortion, Habitual , Multiomics , Pregnancy , Humans , Female , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , DNA Methylation/genetics , Macrophages/metabolism , Transcription Factors/metabolism
20.
Dalton Trans ; 53(8): 3675-3684, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38293800

ABSTRACT

Coordination-driven self-assembly processes often produce remarkable structures. In particular, self-assembly processes mediated by chiral template units have provided research ideas for analyzing the formation of chiral macromolecules in living organisms. In this study, by regulating the proportion of reaction raw materials in the "one-pot" synthesis of lanthanide complexes, we constructed chiral template units with different coordination orientations. As a result, lanthanide chiral chains connected to different structures were obtained through the self-assembly process of coordination recognition. In particular, driven by coordination, chiral template units with codirectional coordination points (called cis configuration) coordinate solely with cis template units during the self-assembly process to obtain a one-dimensional (1D) chain R-1/S-1 with an "S"-shaped distribution. Moreover, chiral template units with reversed coordination sites (called trans configuration) and twisted chiral template units are connected solely to templates with the same configuration to form a 1D chain R-2/S-2 with an axial helix. A circular dichroism spectrum shows that R-1/S-1 and R-2/S-2 are two pairs of enantiomers. The controllable construction of these two differential 1D chains is of great significance for studying coordination recognition at the molecular level. To the best of our knowledge, this is the first study to construct a 1D lanthanide chain through the self-assembly process of coordination recognition. The assembly process of nucleotides to form a hierarchical structure is simulated. This work provides a vivid example of the controllable synthesis of lanthanide complexes with precise structures and offers a new perspective on the formation process of chiral macromolecules that simulates natural processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...