Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(25): 17491-17497, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38818364

ABSTRACT

A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.

2.
Bioresour Technol ; 400: 130692, 2024 May.
Article in English | MEDLINE | ID: mdl-38599348

ABSTRACT

Synthesized allophane was employed in anaerobic digestion of chicken manure to improve the stability and methane production under ammonia inhibition. Adding 0.5 %, 1.0 % and 1.5 % (w/w) allophane increased the methane production by 261 âˆ¼ 350 % compared with the group without allophane addition. Further investigation indicated that the maximum adsorption capacity of allophane for NH4+-N achieved at 261.9 mg/g; it suggested that allophane adsorption potentially alleviated the ammonia inhibition, which also was reflected by the increase in the activity of the related enzyme, such as coenzyme F420. Moreover, allophane addition also intensified the direct interspecies electron transfer (DIET) in anaerobic digestion; it can be well supported by the increased relative abundance of Methanosaeta and Methanosarcina involved in the DIET. Overall, the improved anaerobic digestion via alleviating ammonia inhibition and intensifying DIET by allophane was elucidated comprehensively, which can contribute to the development of a functional additive for efficient anaerobic digestion in practical application.


Subject(s)
Ammonia , Chickens , Manure , Methane , Animals , Ammonia/metabolism , Anaerobiosis , Electron Transport , Methane/metabolism , Adsorption
3.
Water Res ; 251: 121128, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38262163

ABSTRACT

Adsorptive fractionation of dissolved black carbon (DBC) on minerals is proven to alter its molecular composition, which will inevitably affect the environment fate of heavy metals. However, the effects of molecular fractionation on the interaction between DBC and heavy metals remain unclear. Herein, we observed that the selective adsorption of ferrihydrite caused molecular changes of DBC from high molecular weight/unsaturation/aromaticity to low molecular weight/saturation/aliphatics. This process accompanied by a retention of carbohydrate and a reduction of oxygen-rich functional groups (e.g., polyphenols and carboxyl) and long carbon chain in DBC. The residual DBC in aqueous phase demonstrated a weaker binding affinity to copper compared to the original DBC. This decrease in binding affinity was primarily attributed to the adsorption of polycyclic condensed aromatic compounds of 200-250 Da, oxygen-rich polycyclic condensed aromatic compounds of 250-300 Da, oxygen-rich non-polycyclic aromatic compounds of 300-450 Da, and non-polycyclic aromatic compounds of 450-700 Da in DBC by ferrihydrite. Additionally, the retention of carbohydrates and aliphatic compounds of 300-450 Da also made a significant contribution. Notably, carboxylic groups rather than phenolic groups were the dominant oxygen-containing functional groups responsible for this affinity reduction. This study has significant implications for understanding of the biogeochemical processes of DBC at soil-water interface and surface water, especially its role in the transportation of heavy metals.


Subject(s)
Copper , Ferric Compounds , Metals, Heavy , Adsorption , Carbon , Soot , Oxygen , Water
4.
Environ Sci Pollut Res Int ; 31(4): 5116-5131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112872

ABSTRACT

Atrazine, a widely used herbicide in agriculture, is detrimental to both the ecological environment and human health owing to its extensive use, poor degradability, and biotoxicity. The technology commonly used to remove atrazine from water is activated carbon adsorption, but it has the problems of difficult recovery, secondary contamination, and a low removal rate. To efficiently remove atrazine from agricultural wastewater, in this study, a new environmental material, embedding immobilization (EI)-Co- and Zr-modified activated carbon powder (Co/Zr@AC), was prepared by immobilizing the bimetallic Co/Zr@AC via EI technique and employed to remove atrazine. When preparing EI-Co/Zr@AC, the single-factor experiment was conducted and determined the optimal preparation conditions: sodium alginate 2.5% (wt), calcium chloride 4.0% (wt), Co/Zr@AC 1.0% (wt), and bentonite 2.0% (wt). The prepared EI-Co/Zr@AC has a three-dimensional mesh structure and many pores and also possesses good mass transfer performance and mechanical properties. The removal efficiency by EI-Co/Zr@AC for the removal of 5.0 mg/L atrazine from 50 mL was 94.1% at pH 7.0 and 25°C, with an EI-Co/Zr@AC dosage of 0.8 g. The mechanistic study showed that the pseudo-second-order kinetic model could describe the removal process better than the pseudo-first-order kinetic model, and the Freundlich isotherm model fit better than other isotherm models. Additionally, the synthesized EI-Co/Zr@AC spheres demonstrated good reusability, with the atrazine removal rate remaining 70.4% after five cycles, and the mechanical properties of the spheres were stable.


Subject(s)
Atrazine , Herbicides , Water Pollutants, Chemical , Humans , Atrazine/chemistry , Charcoal/chemistry , Bentonite , Water/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
5.
Mikrochim Acta ; 190(12): 478, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37993700

ABSTRACT

A dual-mode pH sensor based on nitrogen-doped carbon dots (N-CDs) with the source of o-phenylenediamine and tryptophan has been constructed. Under the stimulation of pH, the N-CDs exhibited prominent both color and fluorescence changes, leading to the rarely discovered colorimetric and fluorescent dual-readouts for the evaluation of pH. The mathematic relationship was established between pH and fluorescence intensity of N-CDs, and between pH and the UV-Vis absorbance ratio at 630 nm and 488 nm of N-CDs, respectively, over a quite broad pH range of 2.2 to 12.0. Multiple techniques are used to explore the dual-mode pH-responsive mechanism, and the preliminary explanation is put forward. The experimental results show that the N-CDs have visualized pH sensing applicability for actual samples, including various water samples and HeLa cell. Furthermore, the N-CD ink is developed for successful information encryption and anti-counterfeiting. This work might provide valuable insights into the sensing mechanism of CDs, and the application potential of CDs in broader fields.

6.
Anal Methods ; 15(14): 1819-1825, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36961405

ABSTRACT

A novel nanozyme of bimetallic (Ni/Co) metal-organic framework (Ni/Co-MOF) was synthesized using a simultaneous precipitation and acid etching method with a zeolitic imidazolate framework ZIF-67 as the template. The as-synthesized Ni/Co-MOF catalyst presented a three-dimensional hollow nanocage structure and exhibited excellent intrinsic oxidase-like activity. It was demonstrated that Ni/Co-MOF could directly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product (oxidized TMB, oxTMB) in the absence of H2O2. The mechanisms and kinetics of this nanozyme activity were investigated, and it was determined that the catalytic activity of Ni/Co-MOF was closely related to temperature and solution pH. Owing to its strong reducibility, ascorbic acid (AA) could reduce oxTMB, and the blue color of the reaction mixture faded over time. Therefore, a novel colorimetric platform was constructed to detect AA based on the oxidase-like activity of Ni/Co-MOF. Under optimal conditions, the absorbance of ox-TMB at 652 nm decreased linearly over the 0.015-50 µM AA range with a detection limit of 0.004 µM.


Subject(s)
Colorimetry , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Cobalt/chemistry , Colorimetry/methods , Oxidoreductases/metabolism , Ascorbic Acid/chemistry
7.
ChemistryOpen ; 11(10): e202200141, 2022 10.
Article in English | MEDLINE | ID: mdl-36264016

ABSTRACT

Aptamers are a class of single-stranded DNA or RNA oligonucleotides that can exclusively bind to various targets with high affinity and selectivity. Regarded as "chemical antibodies", aptamers possess several intrinsic advantages, including easy synthesis, convenient modification, high programmability, and good biocompatibility. In recent decades, many studies have demonstrated the superiority of aptamers as molecular tools for various biological applications, particularly in the area of cancer theranostics. In this review, we focus on recent progress in developing aptamer-based strategies for the precise analysis and treatment of cancer cells.


Subject(s)
Aptamers, Nucleotide , Neoplasms, Basal Cell , Neoplasms , Humans , SELEX Aptamer Technique , Aptamers, Nucleotide/chemistry , DNA, Single-Stranded , Neoplasms/drug therapy , RNA
8.
Sci Total Environ ; 853: 158602, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36089049

ABSTRACT

Hydropower is a source of climate-friendly energy; however, its ecological impacts have been criticized. Few studies have considered the greenhouse gas (GHG) emissions resulting from ecosystem restoration. This study proposes a techno-ecological synergy framework based on life cycle assessment (LCA) to evaluate 34 hydropower plants (HPs) in the upper reaches of the Yangtze River from GHG supply and demand side perspectives. Our results show that the demand unit carbon footprint of the 34 HPs ranged from 5.43 to 49.36 g CO2-eq/kWh, while the imputed GHG emissions from ecosystem restoration occupied 1.22 % to 30.35 %. The unit carbon footprint of large HPs were larger than those of small HPs, and both were positively correlated with the installed capacity of the HPs. All the HPs were unsustainable at the local scale and relied on regional ecosystem supplies. The Sobol' sensitivity analysis and Monte Carlo simulations demonstrated the reliability of our results. Finally, our results were used to consider the related policy implications.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Greenhouse Effect , Carbon Dioxide/analysis , Ecosystem , Reproducibility of Results , Carbon Footprint
9.
Bioresour Technol ; 361: 127653, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35868469

ABSTRACT

Anaerobic digestion (AD) of food waste (FW) always confronts the challenges of over-acidification in application. This work evaluated the effectiveness of synthesized allophane, a mineral with desirable physicochemical properties (e.g., high pH buffer and organic matter adsorption capacity, and high porosity and specific surface area), in increasing biogas yield during AD of FW as an additive. Results showed that allophane addition (0 to 10 g total solid (TS)) increased the cumulative biogas yield from 409.69 ± 20.77 mL/g TS to 624.06 ± 6.63 mL/g TS, and methane production from 224.12 ± 9.26 mL/g TS to 391.52 ± 0.87 mL/g TS. Improved AD performance was mainly attributed to mitigating over-acidification during the start-up period, and favoring microbial growth, particularly the acetotrophic methanogen of Methanosarcina, indicating an intensified acetoclastic methanogenic pathway. The findings provided a mechanistic insight into the improved AD performance with allophane addition, and offered a potential strategy to stabilize AD of FW in application.


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Biofuels , Bioreactors , Methane , Methanosarcina
10.
Sci Total Environ ; 842: 156905, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35753495

ABSTRACT

To improve the electrochemical properties of lignocellulose-derived carbon, wheat straw was hydrothermally processed at different temperatures followed by KOH activation for the preparation of porous carbons. Their physical, chemical, and electrochemical properties were analyzed to clarify the effects of hydrothermal processing. The results indicated that high-temperature hydrothermal processing fragmented the wheat straw and increased the heteroatoms content to make the hydrochars more conducive to activation, thereby improving the specific surface area, N-heteroatoms and phenolic hydroxyl groups of activated carbons. A maximum specific surface area of 2034.4 m2 g-1 was achieved by HAC-300 (the activated carbon derived from hydrothermally processed wheat straw at 300 °C) with more N-heteroatoms and phenolic hydroxyl groups. Correspondingly, the excellent electrochemical performance of the three-electrode supercapacitor device assembled by HAC-300 showed a specific capacitance of 286.95 F g-1 at 0.5 A g-1, representing an improvement of 89.5 % over than that of the original wheat straw without hydrothermally processing. Its symmetric supercapacitor also realized a good capacitance retention of 95.8 % after 10,000 cycles at 5 A g-1, suggesting the excellent cycling stability of the porous carbon from the hydrothermally processed wheat straw.


Subject(s)
Charcoal , Triticum , Electric Capacitance , Electrodes , Porosity
11.
Bioresour Technol ; 355: 127231, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35483531

ABSTRACT

To reduce the feedstock-sourced heterogeneity of biochar, mushrooms, cultivated from lignocellulosic feedstocks (LFs), were used as precursors for biochar preparation. The coefficient of variation (CV) was adopted to show the homogeneity changes. In contrast to LFs, mushrooms produced relatively lower CVs in terms of elemental and proximate analysis. Furthermore, the CV of H/C (9.20%) and O/C (13.32%) of mushroom-based biochars (MRBCs) was lower than that of LF-based biochars (LFBCs), suggesting more homogeneous aromaticity and hydrophilicity. The relatively lower CV of the volatile matter (0.87%), fixed carbon (0.45%), and ash (2.44%) of MRBCs suggested an improvement in the homogeneity of chemical components. The homogenized physical structure was reflected in the lack of a difference in pore characteristics of MRBCs. The lower CVs (1.89-14.82%) for the pollutant adsorption of MRBCs, implied more stable performance. In conclusion, converting LFs to mushrooms reduced the precursor's heterogeneity, consequently homogenizing the biochar's properties and performance.


Subject(s)
Agaricales , Adsorption , Charcoal/chemistry , Lignin
12.
Sci Total Environ ; 831: 154826, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35341866

ABSTRACT

Water composite pollution is still a great challenge in the field of water treatment. Especially for microplastic (MP), as an emerging pollutant, its wide distribution in water and persistent eco-environmental influence have received great concerns in recent years. Nevertheless, the removal characteristics and mechanism of conventional coagulation on MP composite pollution is quite insufficient. In this study, the coagulation removal performance and mechanisms of MP (polyethylene, PE) and norfloxacin (NOR) was investigated by polyaluminium chloride (PAC) and anionic polyacrylamide (APAM). Compared with single system, the removal efficiency of PE was significantly improved (>99.0%) under plateau stage in composite system, while the removal efficiency of NOR was slightly decreased to around 42% regardless of the addition of APAM. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential and One-way analysis of variance (ANOVA) of experimental data were used to explore the coagulation mechanisms. The results demonstrated that the removal of individual PE and NOR was mainly controlled by charge neutralization and sweep flocculation by PAC and APAM, and adsorption by formation of Al-NOR complex, respectively. Importantly, in composite system, the removal of PE was enhanced not only by the stronger charge neutralization but also the adsorption via the formation of PE-NOR-Al complex. Furthermore, the removal efficiency of PE and NOR in neutral and weak alkaline conditions was higher than that in weak acidic or strong alkaline conditions. The presence of metal ions and humic acid had obvious inhibition and promoting effects on the removal efficiency of PE and NOR. This study can provide a new perspective on fundamental understanding in characteristics and mechanisms of MP composite pollutants removed by coagulation.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Flocculation , Microplastics , Norfloxacin , Plastics , Water Pollutants, Chemical/analysis , Water Purification/methods
13.
J Hazard Mater ; 424(Pt B): 127517, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34688009

ABSTRACT

The abundantly released tail-gas from lignocellulose pretreatment with phosphoric acid plus hydrogen peroxide (PHP) was found to accelerate the aging of latex/silicone textural accessories of the pretreatment device. Inspired by this, tail-gas was utilized to control organic pollutants. Methylene blue (MB), as a model pollutant, was rapidly decolorized by the tail-gas, and oxidative degradation was substantially proven by full-wavelength scanning with a UV-visible spectrometer. The tail-gas from six typical lignocellulosic feedstocks produced 68.0-98.3% MB degradation, suggesting its wide feedstock compatibility. Three other dyes, including rhodamine B, methyl orange and malachite green, obtained 97.5-99.5% degradation; moreover, tetracycline, resorcinol and hexachlorobenzene achieved 73.8-93.7% degradation, suggesting a superior pollutant compatibility. In a cytotoxicity assessment, the survival rate of the degraded MB was 103.5% compared with 80.4% for the untreated MB, implying almost no cytotoxicity after MB degradation. Mechanism investigations indicated that the self-exothermic reaction in PHP pretreatment drove the self-generated peroxy acids into tail-gas. Moreover, it heated the pollutant solution and thermally activated peroxy acids as free radicals for efficient pollutant degradation. Here, a brand-new technique for degrading organic pollutants with a "Win-Win-Win" concept was purposed for lignocellulose valorization, pollutant control by waste tail-gas, and biofuel production.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Lignin , Phosphoric Acids/toxicity
14.
Environ Pollut ; 284: 117537, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34261229

ABSTRACT

Microplastics (MPs) as carriers of various contaminants have attracted more attentions in water environments. However, the interactions between typical MPs and norfloxacin (NOR) in natural water environments were still not systematically studied. In this study, the adsorption of NOR onto four typical types of MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) was investigated in simulated natural water and real surface water, and the adsorption mechanisms were deeply explored to provide fundamental understandings of the MPs-NOR complicated pollution. The results showed that the kinetics of NOR onto all MPs obeyed pseudo-second-order model, and was greatly slowed down at lower temperature or higher salinity. The intrinsic structure and surface area of MPs played important roles in the adsorption behaviors of NOR on these four types of MPs. The adsorption isotherm of NOR onto all MPs could be well described by linear model, with the Kd values following the order of PVC > PS > PE > PP (i.e. 6.229-11.901 L/µg) in simulated natural water. However, in surface water the adsorption isotherms of NOR on all MPs could be well fitted by Freundlich model. For all MPs, the adsorption of NOR was quite pH-dependent due to the electrostatic interactions. Furthermore, the salinity and the presence of dissolved organic matter (DOM) had significantly hindered the NOR adsorption. More importantly, compared with adsorption behaviors in simulated natural water, the competition of coexisting substances such as cations and NOM for adsorption sites and higher water pH dramatically reduced the adsorption of NOR onto all types of MPs in Jiang'an River, with the reduction rate of 19.7-41.2%. Finally, the mechanism studies indicated that the electrostatic attractions played a key role in the adsorption of NOR onto MPs, and π-π, H-bonding, polar-polar, and Van Der Waals interactions were also involved in adsorption processes.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Kinetics , Norfloxacin , Plastics , Water , Water Pollutants, Chemical/analysis
15.
Chem Commun (Camb) ; 57(21): 2613-2616, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33621285

ABSTRACT

This work reports a new methodology for naked-eye nanosensing of Hg2+ where the Tyndall effect of gold nanoparticles (GNPs) acts as a light scattering signalling readout. Its utility is demonstrated with ultrasensitive detection of the target with a limit down to 0.13 nM (∼5461-fold sensitivity improvement over conventional GNP-based methods with surface plasmon resonance signalling).


Subject(s)
Colorimetry/methods , Mercury/analysis , Metal Nanoparticles/chemistry , Spectrophotometry, Ultraviolet/methods , Water Pollutants, Chemical/analysis , Colorimetry/instrumentation , Gold/chemistry , Lasers , Limit of Detection , Polysorbates/chemistry , Proof of Concept Study , Scattering, Radiation , Smartphone , Spectrophotometry, Ultraviolet/instrumentation
16.
RSC Adv ; 11(58): 36859-36865, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35494369

ABSTRACT

This work describes a new nanosensor for the simple, rapid, portable, colorimetric analysis of mercury(ii) (Hg2+) ions by combining the sensitive Tyndall effect (TE) of colloidal Au nanoparticles (AuNPs) with specific thymine-Hg2+-thymine (T-Hg2+-T) coordination chemistry for the first time. For the TE-inspired assay (TEA), in the presence of Hg2+ in a sample, the analyte can selectively mediate the hybridization of three types of flexible single-stranded DNAs (ssDNAs) to form stable rigid double-stranded DNAs (dsDNAs) via the T-Hg2+-T ligand interaction. Subsequent self-assembly of the dsDNAs with terminal thiol groups on the AuNPs' surfaces led to their "double" aggregation in addition to the lack of sufficient ssDNAs as the stabilizing molecules in a high-salt solution, resulting in a remarkably enhanced TE signal that positively relied on the Hg2+ level. The results demonstrated that such a TEA method enabled rapid naked-eye qualitative analysis of 625 nM Hg2+ within 10 min with an inexpensive laser pointer pen as an inexpensive handheld light source to generate the TE response. Making use of a smartphone for portable TE readout could further quantitatively detect the Hg2+ ions in a linear concentration range from 156 to 2500 nM with a limit of detection as low as 25 nM. Moreover, the developed equipment-free nanosensor was also used to analyze the Hg2+ ions in real samples including tap water, drinking water, and pond water, the obtained recoveries were within the range of 93.68 to 108.71%. To the best of our knowledge, this is the first report of using the AuNPs and functional nucleic acids to design a TE-based biosensor for the analysis of highly toxic heavy metal ions.

17.
RSC Adv ; 11(30): 18322-18325, 2021 May 19.
Article in English | MEDLINE | ID: mdl-35480953

ABSTRACT

In this work, phosphorylated lipid-conjugated oligonucleotide (DNA-lipid-P) has been synthesized to develop an enzyme-responsive self-assembly of DNA amphiphiles based on dephosphorylation-induced increase of hydrophobicity. Since elevated ALP level is a critical index in some diseases, ALP-triggered self-assembly of DNA amphiphiles shows promise in disease diagnosis and cancer treatment.

18.
RSC Adv ; 11(62): 39306-39310, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492454

ABSTRACT

Cobalt oxyhydroxide (CoOOH) nanoflakes, as nanoenzymes and fluorescence quenchers, have been widely used in colorimetric and fluorescent analysis. However, their promising light scattering property-the Tyndall effect (TE)-has never been applied in biosensors and biological analysis to date. Herein, we report for the first time a novel strategy for point-of-care detection of ascorbic acid (AA) with the TE of CoOOH nanoflakes providing colorimetric signaling. In this detection system, CoOOH nanoflakes exhibit a strong red TE signal under the illumination of a hand-held 635 nm laser pointer pen. However, the introduction of AA could induce a significant decrease of the TE because it could reduce CoOOH into Co2+ and results in the degradation of the CoOOH nanoflakes. The changes in the TE intensity could be read-out using a smartphone for the portable quantitative analysis of AA. The results showed that this CoOOH nanoflake-based TE-inspired assay (TEA) exhibited a good linear range from 0.25 µM to 40 µM for AA, with a detection limit of 12 nM. It also showed high selectivity toward AA over common potential interfering species. Importantly, this method possessed the advantages of simple operation, low consumption of time and equipment-free analysis and was successfully applied to the detection of AA in vitamin C tablets.

19.
Anal Chem ; 92(15): 10375-10380, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32527079

ABSTRACT

Artificial bases have emerged as a useful tool to expand genetic alphabets and biomedical applications of oligonucleotides. Herein, we reported that the conformation conversion enhances cellular uptake of hydrophobic 3,5-bis(trifluoromethyl)benzene (F) base double-strand-conjugated oligonucleotides. The formation of the F base double-strand caged the hydrophobic F base in the duplex strand, thus preventing F base from interacting with cells to some extent. However, upon conversion of F base double-strand-conjugated oligonucleotide to F base single-strand-conjugated oligonucleotide, F bases then were allowed to interact with cells by stronger hydrophobic interactions, followed by cellular uptake. The results were concluded as a pairing-induced cage effect of F base and have the potential for the construction of stimuli-responsive cellular uptake of functional nucleic acids.


Subject(s)
Oligonucleotides/chemistry , Oligonucleotides/metabolism , Biological Transport , Carbohydrate Conformation , HeLa Cells , Humans , Molecular Structure , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry
20.
RSC Adv ; 10(47): 28121-28127, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519114

ABSTRACT

Low-cost, equipment-free and quantitative detection of a wide range of analytes of interest at home and in the field holds the potential to revolutionize disease diagnosis, environmental pollution monitoring, and food safety analysis. Herein, we describe a functional DNA biosensor for the first time that integrates analyte-directed assembly of enzyme-coated microbead probes for robust yet efficient signal amplification with a simple quantitative detection motif of distance measurement on portable paper devices based on starch-hydrolysis-adjusted wettability change of paper. Its utility is well demonstrated with highly sensitive and specific detection of model analytes ranging from adenosine (an important small biomolecule; 1.6 µM detection limit) to interferon-γ (a protein marker; 0.3 nM detection limit) and Pb2+ (a highly toxic metal ion; 0.5 nM detection limit) by simply using an inexpensive, ubiquitous ruler. The developed general method with the distance-measuring readout should be easily tailored for the portable, read-by-eye, quantitative detection of many other types of analytical targets by taking advantage of their specific functional DNA partners like aptamers and DNAzymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...