Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(44): 99830-99841, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37615912

ABSTRACT

The controllable preparation of efficient non-crystalline solid solution catalysts is a great challenge in the catalytic oxidation of volatile organic compounds. In this work, series non-crystalline solid solution structured Ce-Mn co-oxide nanofibers were creatively prepared by adjusting Ce/Mn molar ratios using electrospinning. 0.20CeMnOx (the ratio of Ce to Mn was 0.2) displayed an outstanding low-temperature toluene oxidation activity (T90 = 233 °C). The formation of the amorphous solid solution and the unique nanofiber structure both contributed to a large specific surface area (S = 173 m2 g-1) and high adsorbed oxygen content (Oads/O = 41.3%), which enhanced the number of active oxygen vacancies. The synergies between non-crystalline structure and active oxygen species markedly improved oxygen migration rate as well as redox ability of the catalysts. Additionally, in situ diffuse reflectance infrared Fourier transform spectra showed that the absorbed toluene could be completely oxidized to CO2 and H2O with benzyl alcohol, benzaldehyde, benzoic acid, and maleic anhydride as intermediates. In summary, this study provided an alternative route for the synthesis of non-crystalline metal co-oxide nanofibers.


Subject(s)
Nanofibers , Oxides , Oxides/chemistry , Temperature , Oxygen/chemistry , Toluene/chemistry , Catalysis
2.
Materials (Basel) ; 15(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431602

ABSTRACT

The chemical composition and surface groups of the carbon support affect the adsorption capacity of toluene. To investigate the effect of catalyst substrate on the catalytic performance, two different plant biomasses, banana peel and sugarcane peel, were used as carbon precursors to prepare porous carbon catalyst supports (Cba, Csu, respectively) by a chemical activation method. After decorating PtCo3 nanoparticles onto both carbon supports (Cba, Csu), the PtCo3-su catalyst demonstrated better catalytic performance for toluene oxidation (T100 = 237 °C) at a high space velocity of 12,000 h-1. The Csu support possessed a stronger adsorption capacity of toluene (542 mg g-1), resulting from the synergistic effect of micropore volume and nitrogen-containing functional groups, which led to the PtCo3-su catalyst exhibiting a better catalytic performance. Moreover, the PtCo3-su catalyst also showed excellent stability, good water resistance properties, and high recyclability, which can be used as a promising candidate for practical toluene catalytic combustion.

SELECTION OF CITATIONS
SEARCH DETAIL
...