Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 96(1150): 20230142, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37493248

ABSTRACT

Artificial intelligence has been introduced to clinical practice, especially radiology and radiation oncology, from image segmentation, diagnosis, treatment planning and prognosis. It is not only crucial to have an accurate artificial intelligence model, but also to understand the internal logic and gain the trust of the experts. This review is intended to provide some insights into core concepts of the interpretability, the state-of-the-art methods for understanding the machine learning models, the evaluation of these methods, identifying some challenges and limits of them, and gives some examples of medical applications.


Subject(s)
Radiation Oncology , Radiology , Humans , Artificial Intelligence , Radiology/methods , Machine Learning , Radiography
2.
IEEE Trans Med Imaging ; 41(11): 3320-3331, 2022 11.
Article in English | MEDLINE | ID: mdl-35714093

ABSTRACT

This work proposes to develop and evaluate a deep learning framework that jointly optimizes k-t sampling patterns and reconstruction for head and neck dynamic contrast-enhanced (DCE) MRI aiming to reduce bias and uncertainty of pharmacokinetic (PK) parameter estimation. 2D Cartesian phase encoding k-space subsampling patterns for a 3D spoiled gradient recalled echo (SPGR) sequence along a time course of DCE MRI were jointly optimized in a deep learning-based dynamic MRI reconstruction network by a loss function concerning both reconstruction image quality and PK parameter estimation accuracy. During training, temporal k-space data sharing scheme was optimized as well. The proposed method was trained and tested by multi-coil complex digital reference objects of DCE images (mcDROs). The PK parameters estimated by the proposed method were compared with two published iterative DCE MRI reconstruction schemes using normalized root mean squared errors (NRMSEs) and Bland-Altman analysis at temporal resolutions of [Formula: see text] = 2s, 3s, 4s, and 5s, which correspond to undersampling rates of R = 50, 34, 25, and 20. The proposed method achieved low PK parameter NRMSEs at all four temporal resolutions compared with the benchmark methods on testing mcDROs. The Bland-Altman plots demonstrated that the proposed method reduced PK parameter estimation bias and uncertainty in tumor regions at temporal resolution of 2s. The proposed method also showed robustness to contrast arrival timing variations across patients. This work provides a potential way to increase PK parameter estimation accuracy and precision, and thus facilitate the clinical translation of DCE MRI.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods
3.
Med Phys ; 47(8): 3447-3457, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32379942

ABSTRACT

PURPOSE: T1 -weighted dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is typically quantified by least squares (LS) fitting to a pharmacokinetic (PK) model to yield parameters of microvasculature and perfusion in normal and disease tissues. Such fitting is both time-consuming as well as subject to inaccuracy and instability in parameter estimates. Here, we propose a novel neural network approach to estimate the PK parameters by extracting long and short time-dependent features in DCE-MRI. METHODS: A Long Short-Term Memory (LSTM) network, widely used for processing sequence data, was employed to map DCE-MRI time-series accompanied with an arterial input function to parameters of the extended Tofts model. Head and neck DCE-MRI from 103 patients were used for training and testing the LSTM model. Arterial input functions (AIFs) from 78 patients were used to generate synthetic DCE-MRI time-series for training, during which data augmentation was used to overcome the limited size of in vivo data. The model was tested on independent synthesized DCE data using AIFs from 25 patients. The LSTM performance was optimized for the numbers of layers and hidden state features. The performance of the LSTM was tested for different temporal resolution, total acquisition time, and contrast-to-noise ratio (CNR), and compared to the conventional LS fitting and a CNN-based method. RESULTS: Compared to LS fitting, the LSTM model had comparable accuracy in PK parameter estimations from fully temporal-sampled DCE-MRI data (~3 s per frame), but much better accuracy for the data with temporally subsampling (4s or greater per frame), total acquisition time truncation by 48%-16%, or low CNR (5 and 10). The LSTM reduced normalized root mean squared error by 40.4%, 46.9%, and 53.0% for sampling intervals of 4s, 5s, and 6s, respectively, compared to LS fitting. Compared to the CNN model, the LSTM model reduced the error in the parameter estimates up to 55.2%. Also, the LSTM improved the inference time by ~ 14 times on CPU compared to LS fitting. CONCLUSION: Our study suggests that the LSTM model could achieve improved robustness and computation speed for PK parameter estimation compared to LS fitting and the CNN based network, particularly for suboptimal data.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Algorithms , Humans , Least-Squares Analysis , Neural Networks, Computer
4.
Nanotechnology ; 29(20): 205203, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29504516

ABSTRACT

Silicon nanopyramids with the excellent ability of light absorption have been mostly reported in solar cells. Here, we report an obviously enhanced lateral photovoltaic effect (LPE) in copper-nanoparticle-covered random Si nanopyramids (Cu@Si-pyramid). Remarkable photoelectric responses are achieved in broadband from 405 to 780 nm. Furthermore, a prominent LPE is double-enhanced from 74.0 to 157.9 mV mm-1 when the linear region decreases from 3 to 1 mm. Finite-difference time-domain simulation is applied to investigate the origin of the exceptional results. This work declares a position-sensitive property of Si-nanopyramid systems and proposes promising applications to photodetections based on LPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...