Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
ACS Appl Mater Interfaces ; 15(21): 25369-25381, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37199535

ABSTRACT

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, its efficiency is hindered by three key parameters, namely, limited penetration depth of external light, tumor hypoxia, and self-aggregation of photosensitizers. Herein, we fabricated a novel "all-in-one" chemiluminescence-PDT nanosystem through the integration of an oxygen-supplying protein (hemoglobin, Hb) and a luminescent donor (luminol, Lum) in hierarchically engineered mesoporous porphyrinic metal-organic framework (MOF) nanoparticles. Mechanistically, the in situ chemiluminescence of Lum is activated by the high concentration of H2O2 in 4T1 cancer cells and further catalyzed by Hb and then absorbed by the porphyrin ligands in MOF nanoparticles through chemiluminescence resonance energy transfer. The excited porphyrins then sensitize oxygen supplied by Hb to produce sufficient reactive oxygen species that kill cancer cells. The MOF-based nanocomposite demonstrates excellent anticancer activity both in vitro and in vivo, with eventually a 68.1% tumor inhibition rate after intravenous injections without external light irradiation. This self-illuminating, oxygen-self-supplying nanosystem integrates all essential components of PDT into one simple nanoplatform, demonstrating great potential for the selective phototherapy of deep-seated cancer.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Neoplasms , Photochemotherapy , Porphyrins , Humans , Metal-Organic Frameworks/pharmacology , Luminescence , Hydrogen Peroxide , Tumor Microenvironment , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Oxygen , Neoplasms/drug therapy , Nanocomposites/therapeutic use , Porphyrins/pharmacology , Cell Line, Tumor
2.
Adv Healthc Mater ; 12(16): e2201651, 2023 06.
Article in English | MEDLINE | ID: mdl-36168853

ABSTRACT

Microvascular dysfunction caused by hyperglycemia leads to slow healing of diabetic wounds and significantly increases the risk of bacterial infection. The misuse of antibiotics can also lead to bacterial resistance, making the management of diabetic wounds more challenging. Thus, developing new antibacterial agents or strategies to overcome antibiotic resistance is highly pursued. Herein, novel supramolecular photothermal nanoparticles (MCC/CS NPs), assembled from mono-carboxyl corrole (MCC) and chitosan via hydrogen bonding and π-π stacking, are developed and used for treating bacterial wound infection. The MCC molecules possess good photothermal performance and the chitosan with inherent bioactivity can exert moderate antibacterial effects. The aggregation of MCC in MCC/CS NPs induced by chitosan-templated self-assembly further quenches molecular fluorescence and realizes an extraordinary photothermal conversion efficiency of 66.4%. Moreover, the highly positively charged MCC/CS NPs can selectively target bacteria via electrostatic interactions. Under near-infrared laser irradiation, the MCC/CS NPs achieve potent photothermal and inherent antimicrobial synergistic effects against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Furthermore, the bacteria-infected diabetic wound model confirms that the MCC/CS NPs can effectively kill drug-resistant bacteria, accelerate wound healing and angiogenesis, and show good biocompatibility, representing a novel and efficient photothermal antibacterial nanoplatform.


Subject(s)
Bacterial Infections , Chitosan , Diabetes Mellitus , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Humans , Wound Healing , Anti-Bacterial Agents/pharmacology
3.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36128848

ABSTRACT

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Subject(s)
Dendrimers , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Indocyanine Green/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Epithelial Cell Adhesion Molecule , Doxorubicin/pharmacology , Delayed-Action Preparations , Precision Medicine , Disulfiram , Drug Delivery Systems/methods , Neoplasms/therapy , Lactic Acid , Hyperthermia, Induced/methods , Drug Liberation , Theranostic Nanomedicine/methods , Cell Line, Tumor
4.
J Integr Plant Biol ; 64(10): 1916-1934, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35943836

ABSTRACT

Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two ß-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Actins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brefeldin A/metabolism , Cytoskeleton/metabolism , Gravitropism/genetics , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Transcription Factors/metabolism , Tubulin/metabolism
5.
Front Psychiatry ; 13: 864481, 2022.
Article in English | MEDLINE | ID: mdl-35573384

ABSTRACT

Increasing evidence indicates that inflammatory responses may influence brain neurochemical pathways, inducing depressive-like behaviors. Ultrasound stimulation (US) is a promising non-invasive treatment for neuropsychiatric diseases. We investigated whether US can suppress inflammation and improve depressive-like behaviors. Mice were intraperitoneally injected with lipopolysaccharide to induce depressive-like behaviors. Ultrasound wave was delivered into the prefrontal cortex (PFC) for 30 min. Depressive- and anxiety-like behaviors were evaluated through the forced swimming test (FST), tail suspension test (TST), and elevated plus maze (EPM). Biochemical analyses were performed to assess the expression of inflammatory cytokines in the PFC and serum. The results indicated that US of the PFC significantly improved depressive-like behaviors in the TST (p < 0.05) and FST (p < 0.05). Anxiety-like behaviors also improved in the EPM (p < 0.05). Furthermore, the lipopolysaccharide-mediated upregulation of IL-6, IL-1ß, and TNF-α in the PFC was significantly reduced (p < 0.05) by US. In addition, no tissue damage was observed. Overall, US of PFC can effectively improve lipopolysaccharide-induced depressive-like behaviors, possibly through the downregulation of inflammatory cytokines in the PFC. US may be a safe and promising tool for improvement of depression.

6.
Sci Adv ; 8(8): eabm4677, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35196087

ABSTRACT

Oral protein delivery is considered a cutting-edge technology to improve patients' quality of life, offering superior patient compliance and convenience compared with injections. However, oral protein formulation has stagnated because of the instability and inefficient penetration of protein in the gastrointestinal tract. Here, we used acid-resistant metal-organic framework nanoparticles (UiO-68-NH2) to encapsulate sufficient insulin and decorated the exterior with targeting proteins (transferrin) to realize highly efficient oral insulin delivery. The UiO-68-NH2 nanocarrier with proper pore size achieved high insulin loading while protecting insulin from acid and enzymatic degradation. Through receptor-mediated transcellular pathway, the transferrin-coated nanoparticles realized efficient transport across the intestinal epithelium and controlled insulin release under physiological conditions, leading to a notable hypoglycemic effect and a high oral bioavailability of 29.6%. Our work demonstrates that functional metal-organic framework nanoparticles can protect proteins from the gastric environment and overcome the intestinal barrier, thus providing the possibility for oral biomacromolecule delivery.

7.
J Colloid Interface Sci ; 608(Pt 2): 1882-1893, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34749141

ABSTRACT

Combination chemotherapy is a promising strategy for cancer treatment in clinics especially when multidrug-resistant cancer is emerging. One significant challenge remains in achieving sufficient multi-drug delivery into tumor cells to maximize the synergetic therapeutic effect, as it is hard to concentrate drugs in drug-resistant cancer. Therefore herein, metal-organic framework (MOF)-based polymer-coated hybrid nanoparticles (NPs) were devised and constructed for the co-delivery of doxorubicin and cisplatin to enhance combination therapy of multidrug-resistant cancer. The MOF@polymer nanocarrier combined the merits of high multi-drug loading capacity, physiological stability, and tumor microenvironment pH-responsiveness, facilitating simultaneous delivery of drugs into cancer cells and making the most of synergistic antitumor effect. Remarkably, this hybrid nanocarrier maintains a negative surface charge during circulation to guarantee a stable and prolonged process in vivo, and then exposes inner positive MOF after degradation of the outer polymer in the acidic tumor microenvironment to promote multi-drug release, cellular internalization, nuclear localization, and tumor penetration. In vitro and in vivo studies with drug-resistant MCF-7/ADR cancer suggested that the nanocarrier could achieve increased accumulation of drugs in solid tumors, remarkable tumor elimination results as well as minimized side effects, indicating an improved efficacy and safety of combination chemotherapy. MOF@polymer hybrid nanocarriers provide new insights into the development of stimuli-responsive co-delivery systems of multiple drugs.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Nanoparticles , Neoplasms , Stimuli Responsive Polymers , Doxorubicin/pharmacology , Drug Delivery Systems , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Polymers
8.
Int J Pharm ; 611: 121297, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34822966

ABSTRACT

Atherosclerosis (AS), with its intricate pathogenesis, is primarily responsible for the development and progression of cardiovascular diseases. Although drug development has made some achievements in AS therapy, limited targeting ability and rapid blood clearance remain great challenges for achieving superior clinical outcomes. Herein, ginsenoside (Re)- and catalase (CAT)-coloaded porous poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were prepared and then surface modified with U937 cell membranes (UCMs) to yield a dual targeted model and multimechanism treatment biomimetic nanosystem (Cat/Re@PLGA@UCM). The nanoparticles consisted of a core-shell spherical morphology with a favorable size of 112.7 ± 0.4 nm. Furthermore, UCM assisted the nanosystem in escaping macrophage phagocytosis and targeting atherosclerotic plaques. Meanwhile, loading with catalase might not only exhibit favorable antioxidant effects but also enable H2O2-responsive drug release ability. The Cat/Re@PLGA@UCM NPs also exhibited outstanding ROS scavenging properties, downregulating ICAM-1, TNF-α and IL-1ß, while preventing angiogenesis to attenuate the progression of AS. Moreover, the nanodrugs displayed 2.7-fold greater efficiency in reducing the atherosclerotic area in ApoE-/- mouse models compared to free Re. Our nanoformulation also displayed excellent biosafety in response to long-term administration. Overall, our study demonstrated the superiority of UCM-coated stimuli-responsive nanodrugs for effective and safe AS therapy.


Subject(s)
Atherosclerosis , Nanoparticles , Animals , Atherosclerosis/drug therapy , Biomimetics , Cell Membrane , Humans , Hydrogen Peroxide , Mice , U937 Cells
9.
Int J Pharm ; 605: 120784, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34111544

ABSTRACT

Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.


Subject(s)
Ginsenosides , Nanoparticles , Administration, Cutaneous , Drug Delivery Systems , Insulin , Permeability , Skin
10.
ACS Appl Mater Interfaces ; 12(51): 57362-57372, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33301289

ABSTRACT

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9. The core-shell nanoparticles had good stability, enabled ultrahigh drug loading, targeted delivery, and controlled-release of the gene-drug combination. The nanocomplex showed >60% EGFR-editing efficiency without off-target effects in all nine similar sites, regulating the EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic effect on cell proliferation. Importantly, the co-delivery nanosystem achieved efficient EGFR gene therapy and caused 85% tumor inhibition in a mouse model. Furthermore, the nanocomplex showed high accumulation at the tumor site in vivo and exhibited good safety with no damage to major organs. Due to these properties, the nanocomplex provides a versatile delivery approach for efficient co-loading of gene-drug combinations, allowing for precise gene editing and synergistic inhibition of tumor growth without apparent side effects on normal tissues.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Sorafenib/therapeutic use , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/toxicity , CRISPR-Associated Protein 9/genetics , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Liberation , Epithelial Cell Adhesion Molecule/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Editing , Genes, erbB-1 , Humans , Mice , Nanoparticles/toxicity , Polyamines/chemistry , Polyamines/toxicity , Porosity , Signal Transduction/drug effects , Silicon Dioxide/toxicity
11.
Int Urol Nephrol ; 49(11): 2079-2086, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28748494

ABSTRACT

PURPOSE: The present study investigated the putative mechanisms underlying effects of KATP channel on high glucose (HG)-induced mesangial cell proliferation and tissue inhibitors of metalloproteinases (TIMP)-2 and Collagen IV production. METHODS: Rat mesangial cells were subjected to whole cell patch clamp to record the KATP channel currents under high glucose (HG, 30 mM) condition. Cell proliferation was measured using a CCK-8 assay. The production of TIMP-2 and Collagen IV and AMP-activated protein kinase (AMPK)-signaling pathway activity was assessed by ELISA and Western blotting, respectively. AMPK agonist (AICAR) was used to analyze the role of this kinase. The expression of KATP subunit (Kir6.1, Kir6.2, SUR1, SUR2A and SUR2B) was examined using quantitative real-time PCR (RT-PCR). RESULTS: We found that HG was significant decreases in the expression of Kir6.1, SUB2A and SUB2B, three subunits of KATP, TIMP-2 production, KATP channel activity and AMPK activity, while it promoted the cell proliferation and Collagen IV production in rat mesangial cells. Pretreatment with KATP selective opener (diazoxide, DZX) significantly inhibited HG-induced mesangial cell proliferation, Collagen IV production and decrease in KATP channel activity in rat mesangial cells, which were reversed by pretreatment of 5-hydroxydecanoate, a selective inhibitor of KATP. Moreover, AICAR pretreatment inhibited HG-induced decrease in KATP channel activity. CONCLUSIONS: Taken together, activating AMPK-KATP signaling may protect against HG-induced mesangial cell proliferation and Collagen IV production, and, thereby, provides new insights into the molecular mechanisms underlying early diabetic nephropathy (DN).


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Proliferation/drug effects , Collagen Type IV/biosynthesis , Glucose/pharmacology , KATP Channels/metabolism , Mesangial Cells/metabolism , Sulfonylurea Receptors/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cells, Cultured , Decanoic Acids/pharmacology , Diabetic Nephropathies/metabolism , Diazoxide/pharmacology , Glucose/administration & dosage , Hydroxy Acids/pharmacology , Hypoglycemic Agents/pharmacology , KATP Channels/antagonists & inhibitors , Male , Mesangial Cells/drug effects , Potassium Channels, Inwardly Rectifying/metabolism , Rats , Rats, Sprague-Dawley , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Sulfonylurea Receptors/antagonists & inhibitors , Tissue Inhibitor of Metalloproteinase-2/metabolism
12.
Am J Transl Res ; 9(2): 330-342, 2017.
Article in English | MEDLINE | ID: mdl-28337263

ABSTRACT

The involvement of the receptor for advanced glycation end (RAGE) in different diseases has been reviewed in great detail, previously, but the effects of diabetic drugs on RAGE-induced skin lesion during long course diabetes remains poorly understood. In the present study, we have shown that RAGE was overexpressed in both diabetic rats and human keratinocytes (HaCaT cells). Cell cycle arrest and apoptosis as well as alternations of relative protein levels were also found in diabetic rats and HaCaT cells with overexpression of RAGE that were rectified by metformin (Met) treatment. Moreover, overexpression of RAGE was also found to induce secretions of TNF-α, IL-1ß, IL-6, ICAM-1 and COX-2 in HaCaT cells, and Met treatment corrected these inflammatory factor secretions. In addition, treatment with Met markedly reduced RAGE overexpression-induced p38 and NF-κB activation. Taken together, the findings of the present study have demonstrated, for the first time that Met protects HaCaT cells against diabetes-induced injuries and inflammatory responses through inhibiting activated RAGE.

13.
Int J Mol Med ; 39(4): 936-948, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28290605

ABSTRACT

Recent progress in regenerative medicine has suggested that mesenchymal stem cell (MSC)-based therapy is a novel potential cure for diabetes. Betatrophin is a newly identified hormone that can increase the production and expansion of insulin-secreting ß-cells when administered to mice. In this study, we evaluated the effect of betatrophin overexpression by human adipose-derived MSCs (ADMSCs) by in vitro experiments, as well as following their transplantation into a mice with streptozotocin (STZ)-induced diabetes. The overexpression of betatrophin did not affect the ADMSCs in terms of proliferation, differentiation and morphology. However, the co-culture of human islets with ADMSCs overexpressing betatrophin (ADMSCs-BET) induced islet proliferation, ß-cell specific transcription factor expression, and the islet production of insulin under the stimulation of glucose or KCl and Arg. In addition, ADMSCs-BET enhanced the anti-inflammatory and anti-apoptotic effects of the co-cultured islets compared with ADMSCs cultured alone. In mice with STZ-induced diabetes, the transplantation of ADMSCs-BET ameliorated the hyperglycemia and weight loss associated with STZ-induced diabetes; ADMSCs-BET also significantly enhanced the ratio of ß-cells per islet compared to the transplantation of ADMSCs alone. Thus, our study demonstrates a novel strategy for inducing ß-cell regeneration. ADMSCs-BET may replace insulin injections by increasing the number of endogenous insulin-producing cells in patients with diabetes. This combined strategy of ADMSC transplantation and gene therapy may prove to be a useful therapy for the treatment of diabetes.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Experimental/therapy , Insulin-Secreting Cells/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Peptide Hormones/biosynthesis , Adipose Tissue/pathology , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Heterografts , Humans , Insulin-Secreting Cells/pathology , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred BALB C
14.
J Exp Bot ; 67(18): 5325-5337, 2016 10.
Article in English | MEDLINE | ID: mdl-27473572

ABSTRACT

Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking.


Subject(s)
Actin-Related Protein 3/physiology , Arabidopsis Proteins/physiology , Gravitropism/physiology , Indoleacetic Acids/metabolism , Plant Growth Regulators/physiology , Plant Roots/physiology , Plastids/physiology , Actin-Related Protein 3/genetics , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gravitropism/genetics , Microscopy, Confocal , Plastids/genetics
15.
Nat Commun ; 6: 8822, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26578169

ABSTRACT

PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Gravitropism/genetics , Plant Roots/growth & development , RNA, Messenger/metabolism , Transcription Factors/genetics , Arabidopsis/growth & development , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Glucuronidase/metabolism , In Situ Hybridization , Organisms, Genetically Modified , Plant Roots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
16.
Plant Cell ; 27(5): 1445-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25966761

ABSTRACT

Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Calcium/metabolism , Cyclin-Dependent Kinase 8/metabolism , Hydrogen Peroxide/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Catalase/genetics , Catalase/metabolism , Cyclin-Dependent Kinase 8/genetics , Droughts , Gene Expression Regulation, Plant , Homeostasis , Plant Stomata/enzymology , Plant Stomata/genetics , Plant Stomata/physiology , Plants, Genetically Modified , Protein Kinases/genetics , Protein Kinases/metabolism , Stress, Physiological
17.
Mol Plant ; 8(5): 783-95, 2015 May.
Article in English | MEDLINE | ID: mdl-25680231

ABSTRACT

The initiation of stomatal lineage and subsequent asymmetric divisions in Arabidopsis require the activity of the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). It has been shown that SPCH controls entry into the stomatal lineage as a substrate either of the MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade or GSK3-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2). Here we show that three serine residues of SPCH appear to be the primary phosphorylation targets of Cyclin-Dependent Kinases A;1 (CDKA;1) in vitro, and among them Serine 186 plays a crucial role in stomatal formation. Expression of an SPCH construct harboring a mutation that results in phosphorylation deficiencies on Serine 186 residue failed to rescue stomatal defects in spch null mutants. Expression of a phosphorylation-mimic mutant SPCH(S186D) complemented stomatal production defects in the transgenic lines harboring the targeted expression of dominant-negative CDKA;1.N146. Therefore, in addition to MAPK- and BIN2-mediated phosphorylation on SPCH, phosphorylation at Serine 186 is positively required for SPCH function in regulating stomatal development.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Stomata/growth & development , Serine/metabolism , Amino Acid Motifs , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Phosphorylation , Plant Stomata/chemistry , Plant Stomata/genetics , Plant Stomata/metabolism , Serine/chemistry , Serine/genetics
18.
Nat Commun ; 5: 3090, 2014.
Article in English | MEDLINE | ID: mdl-24463772

ABSTRACT

Stomata are two-celled valves that control epidermal pores whose spacing optimizes shoot-atmosphere gas exchange. They develop from protodermal cells after unequal divisions followed by an equal division and differentiation. The concentration of the hormone auxin, a master plant developmental regulator, is tightly controlled in time and space, but its role, if any, in stomatal formation is obscure. Here dynamic changes of auxin activity during stomatal development are monitored using auxin input (DII-VENUS) and output (DR5:VENUS) markers by time-lapse imaging. A decrease in auxin levels in the smaller daughter cell after unequal division presages the acquisition of a guard mother cell fate whose equal division produces the two guard cells. Thus, stomatal patterning requires auxin pathway control of stem cell compartment size, as well as auxin depletion that triggers a developmental switch from unequal to equal division.


Subject(s)
Body Patterning , Indoleacetic Acids/metabolism , Plant Stomata/growth & development , Arabidopsis Proteins/metabolism , Biological Transport , Green Fluorescent Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Models, Biological , Mutation , Plant Stomata/ultrastructure
19.
Cell Physiol Biochem ; 32(4): 827-37, 2013.
Article in English | MEDLINE | ID: mdl-24080983

ABSTRACT

BACKGROUND: Damage to Schwann cells has been reported in the development of diabetic peripheral neuropathy (DPN), but how Schwann cells are damaged has not been elucidated. METHODS: The highly expressed proteins in the PBMC of DPN patients were identified through MALDI-TOF/TOF and SELDI protein chip technology. The expression levels of CXCR3 were detected by qPCR and flow cytometric analysis. Transwell migration assay was to investigate the migration of CD8(+) T cells. Western-blot analysis was to detect the levels of p38 MAP kinases pathway related proteins and TNF-α, FasL, and PDL1. RESULTS: Two highly expressed proteins, CXCR3 and p38, were identified. Under high glucose conditions, CXCR3 was elevated in CD8(+) T cells via the activation of p38 MAP kinases. Moreover, CXCL9, CXCL10, and CXCL11 expression were induced in Schwann cells, leading to the recruitment and infiltration of CD8(+) T cells into DPN tissues. Further study demonstrated that Schwann cells promoted activation of CD8(+) T cells and induced expression of TNF-α, FasL, and PDL1 on CD8(+) T cells, in return, CD8(+) T cells induced obvious apoptosis of Schwann cells. CONCLUSION: Our study indicates that CD8(+) T cells mediate cytotoxicity toward Schwann cells and play an important role in the development of DPN.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Diabetic Neuropathies/metabolism , Peripheral Nervous System Diseases/metabolism , Schwann Cells/metabolism , Blotting, Western , Cells, Cultured , Chemokine CXCL10/metabolism , Chemokine CXCL11/metabolism , Chemokine CXCL9/metabolism , Flow Cytometry , Glucose/adverse effects , Humans , Real-Time Polymerase Chain Reaction , Receptors, CXCR3/metabolism , Schwann Cells/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Chin J Integr Med ; 19(7): 524-31, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23818205

ABSTRACT

OBJECTIVE: To investigate the expression of C-type natriuretic peptides (CNP) and natriuretic peptide receptor-B (NPR-B) receptor in diabetic rats renal cortex, and the regulation by Tongluo Recipe (TLR). METHODS: Sixty male SD rats were divided into 3 groups: the normal control group, diabetic model group and diabetic TLR group. Each group was further divided into two subgroups of ten in each, according to 4-week or 12-week observation period. Streptozotocin (STZ)-induced diabetic rats were treated with TLR (1.0 g·kg(-1)·d(-1)) for 4 and 12 weeks, respectively. (1) The essential information was collected for comparing renal mass, serum creatinine and 24 h urine albumen on each group was calculated. (2) CNP mRNA and NPR-B mRNA were detected by realtime-polymerase chain reaction (PCR) on rats renal cortex. (3) Concentration of CNP on renal cortex or serum were analyzed by enzyme-linked immunosorbent assay (ELISA). (4) Pathological evaluation and NPR-B immunostaining for renal tissue were also performed. RESULTS: (1) CNP and NPR-B mRNA levels were detected in each treated or untreated group, with slight elevated in untreated diabetes rats administrated with STZ after 4-week and CNP mRNA level remarkable elevated at 39.21 times higher than normal control group after 12 weeks, but NPR-B mRNA level showed a remarkably down-regulation at 98.07% after 12 weeks. CNP mRNA of TLR-treated group was also elevated after 12-week treatment, but less than untreated group. (2) Concentrations of CNP in renal cortex were obviously increased in treated or untreated diabetes rats, within these groups the treatment of TLR was found more significantly on prompting CNP concentration. Comparing to normal group, serum concentrations of CNP were also increased in treated or untreated diabetic groups, but there was no difference between these diabetic groups. (3) Renal lesions like glomerular volume increased are observed mostly in the relative early stage after 4 weeks. Although TLR treated group had no significant difference in their glomerular volume, the degrees of injury of glomerulus were ameliorated, as well as the NPR-B immunostaining enhanced in glomerulus. Weakly positive immunostaining of NPR-B are observed in glomerulus of normal control, and negative in glomerulus of untreated diabetes rats administrated with STZ after 12 weeks, whereas TLR-treatment groups showed a little enhancement. CONCLUSION: CNP and NPR-B showed different characteristic on renal cortex at different pathological period in diabetes rats, and TLR regulated their expression.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Kidney/metabolism , Natriuretic Peptide, C-Type/genetics , Receptors, Atrial Natriuretic Factor/genetics , Animals , Body Weight/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Drugs, Chinese Herbal/therapeutic use , Hematuria/complications , Hematuria/genetics , Hematuria/pathology , Immunohistochemistry , Kidney/drug effects , Kidney/pathology , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Cortex/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Natriuretic Peptide, C-Type/metabolism , Organ Size/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Atrial Natriuretic Factor/metabolism , Staining and Labeling , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...