Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
ACS Omega ; 9(19): 20773-20790, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764633

ABSTRACT

Lingzhu Pulvis is a classic formulation for treating febrile convulsions in children. However, Acorus tatarinowii essential oil (AT-EO) in this prescription is prone to volatilization and oxidation, compromising the efficacy and quality control of this formulation. Herein, based on the concept of "combination of medicine and adjuvant", Pickering emulsion technology was applied to enhance the stability of AT-EO using modified amber as a stabilizer. Amber was a resinous medicinal powder in Lingzhu Pulvis and was modified into a suitable stabilizer for Pickering emulsion through surface modification. A thermal stability study indicated that Pickering emulsion, stabilized by modified amber, exhibited a higher retention rate of AT-EO and lower levels of peroxide value and malondialdehyde content compared to those of the pure AT-EO group after heat treatment at 40 °C for 1, 3, and 8 h. Additionally, component analysis in content and composition revealed that the volatile components of AT-EO in the Pickering emulsion were more stable during the thermal treatment process. This study convincingly illustrates the potential of a Pickering emulsion stabilized with modified medicinal powders to improve the thermal stability of the essential oil.

2.
Phytomedicine ; 128: 155472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461630

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE: This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS: The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS: Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION: TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Mitophagy , Humans , Mitophagy/drug effects , Cardiovascular Diseases/drug therapy , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/pharmacology , Animals
3.
J Ethnopharmacol ; 326: 117979, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38412892

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW: This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS: By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS: More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS: This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.


Subject(s)
Heat Stroke , Lamiaceae , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Lamiaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Hypoglycemic Agents
4.
Int J Biol Macromol ; 262(Pt 2): 130030, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336330

ABSTRACT

Schisandra chinensis, as a famous medicinal and food homologous plant, has a long history of medicinal and dietary therapy. It has the functions of nourishing the kidney, calming the heart, tranquilising the mind, tonifying Qi and producing fluid to relieve mental stress, based on the theory of traditional Chinese medicine. Accumulating evidence has shown that S. chinensis polysaccharides (SCPs) are one of the most important bioactive macromolecules and exhibit diverse biological activities in vitro and in vivo, including neuroprotective, hepatoprotective, immunomodulatory, antioxidant, hypoglycemic, cardioprotective, antitumour and anti-inflammatory activities, etc. This review aims to thoroughly review the recent advances in the extraction and purification methods, structural features, biological activities and structure-activity relationships, potential applications and quality assessment of SCPs, and further highlight the therapeutic potentials and health functions of SCPs in the fields of therapeutic agents and functional food development. Future insights and challenges of SCPs were also critically discussed. Overall, the present review provides a theoretical overview for the further development and utilization of S. chinensis polysaccharides in the health food and pharmaceutical fields.


Subject(s)
Plant Extracts , Schisandra , Plant Extracts/chemistry , Schisandra/chemistry , Antioxidants/pharmacology , Diet , Polysaccharides/chemistry
5.
Int J Biol Macromol ; 263(Pt 1): 130206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373568

ABSTRACT

Hippophae rhamnoides L. (sea buckthorn) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to strengthen the stomach and digestion, relieving cough and resolving phlegm, promoting blood circulation, and resolving blood stasis in traditional Chinese medicine. Emerging evidence has shown that H. rhamnoides polysaccharides (HRPs) are vital bioactive macromolecules responsible for its various health benefits. HRPs possess the huge potential to develop a drug improving or treating different diseases. In this review, we comprehensively and systematically summarize the recent information on extraction and purification methods, structural features, biological activities, structure-activity relationships, and potential industry applications of HRPs and further highlight the therapeutic potential and sanitarian functions of HRPs in the fields of therapeutic agents and functional food development. Additionally, this paper also lists a variety of biological activities of HRPs in vitro and in vivo roundly. Finally, this paper also discusses the structure-activity relationships and potential applications of HRPs. Overall, this work will help to have a better in-depth understanding of HRPs and provide a scientific basis and direct reference for more scientific and rational applications.


Subject(s)
Hippophae , Hippophae/chemistry , Fruit/chemistry , Polysaccharides/pharmacology , Polysaccharides/analysis
6.
Int J Biol Macromol ; 259(Pt 1): 129047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171434

ABSTRACT

Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.


Subject(s)
Platycodon , Humans , Platycodon/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Medicine, Chinese Traditional , Spleen , Cough
7.
Int J Biol Macromol ; 259(Pt 2): 129193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191106

ABSTRACT

Dandelion (Taraxacum mongolicum Hand.-Mazz), as a famous medicinal and edible plant, has the effects of clearing heat and detoxifying, diuresis, and resolving masses. Phytochemistry investigations revealed that T. mongolicum has various bioactive ingredients, mainly including flavonoids, sterols, polysaccharides, phenolic acids and volatile oils. There is growing evidence have shown that the polysaccharides from T. mongolicum (TMPs) are a class of representative pharmacologically bioactive macromolecules with a variety of biological activities both in vitro and in vivo, such as immunomodulatory, anti-inflammatory, anti-oxidant, anti-tumor, hepatoprotective, hypolipidemic and hypoglycemic, anti-bacterial, regulation of intestinal microbial, and anti-fatigue activities, etc. Additionally, the structural modification and potential applications of TMPs were also outlined. The present review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and potential industry applications of TMPs to support their therapeutic potential and health care functions. Overall, the present review provides a theoretical overview for further development and utilization of TMPs in the fields of pharmaceutical and health food.


Subject(s)
Taraxacum , Taraxacum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Flavonoids/chemistry , Antioxidants/pharmacology
8.
Fitoterapia ; 172: 105744, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952762

ABSTRACT

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Frankincense , Oils, Volatile , Sulfates , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Dextrans/metabolism , Dextrans/pharmacology , Dextrans/therapeutic use , Frankincense/metabolism , Frankincense/pharmacology , Frankincense/therapeutic use , Oils, Volatile/pharmacology , RNA-Seq , Disease Models, Animal , Molecular Structure , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/drug therapy
9.
Biomed Pharmacother ; 168: 115727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879216

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the mechanism through which rosemary essential oil treats atopic dermatitis. METHODS: A dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model was established and treated with low (1%), medium (2%), and high (4%) doses of Rosmarinus officinalis essential oil (EORO). Serum levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) in each group were determined using enzyme-linked immunosorbent assay (ELISA). Skin tissues were stained with hematoxylin-eosin and toluidine blue. We used network pharmacology and molecular docking techniques to verify the biological activity of essential proteins and their corresponding compounds in the pathway. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics analysis and multivariate statistical analysis of mouse serum to screen differential metabolites and metabolic pathway analysis. Protein expression of p-JAK1, CD4+ cells, and IL-4 in the skin tissue was detected by immunohistochemistry analysis. Protein levels of STAT3, p-STAT3, P65, and p-P65 in damaged skin tissues were detected using western blotting. RESULT: The skin of mice in the model group showed different degrees of erythema, dryness, scratches, epidermal erosion and shedding, and crusting. After treatment, the serum levels of IL-6 and TNF-α in EORO group were significantly decreased, and the expression of p-JAK1,CD4 + cells, IL-4, p-P65 / P65 and p-STAT3 / STAT3 proteins in skin tissues were decreased. CONCLUSION: EORO can effectively improve DNCB-induced AD-like skin lesions in mice by regulating the JAK/STAT/NF-κB signaling pathway, thereby reducing the production of downstream arachidonic acid metabolites, inhibiting skin inflammation, and restoring epidermal barrier function.


Subject(s)
Dermatitis, Atopic , Oils, Volatile , Rosmarinus , Animals , Mice , Cytokines/metabolism , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene/pharmacology , Interleukin-4/metabolism , Interleukin-6/metabolism , Mice, Inbred BALB C , Molecular Docking Simulation , NF-kappa B/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Signal Transduction , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Int J Nanomedicine ; 18: 4275-4311, 2023.
Article in English | MEDLINE | ID: mdl-37534056

ABSTRACT

Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Female , Humans , Curcumin/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Solubility , Drug Carriers/chemistry
11.
J Nanobiotechnology ; 20(1): 509, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463199

ABSTRACT

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Neoplasms , United States , Drug Delivery Systems , Half-Life , Biological Availability , Neoplasms/drug therapy
12.
Chin Med ; 17(1): 130, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403018

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) has been used to treat various diseases for thousands of years. However, the uncertainty of dosage as well as the lack of systemic evaluation of pharmacology and toxicology is one major reason why TCM remains mysterious and is not accepted worldwide. Hence, we aimed to propose an integrated dose-response metabolomics strategy based on both therapeutic effects and adverse reactions to guide the TCM dosage in treatment. METHODS: The proposed methodology of integrated dose-response metabolomics includes four steps: dose design, multiple comparison of metabolic features, response calculation and dose-response curve fitting. By comparing the changes of all metabolites under different doses and calculating these changes through superposition, it is possible to characterize the global disturbance and thus describe the overall effect and toxicity of TCM induced by different doses. Rhubarb, commonly used for constipation treatment, was selected as a representative TCM. RESULTS: This developed strategy was successfully applied to rhubarb. The dose-response curves clearly showed the efficacy and adverse reactions of rhubarb at different doses. The rhubarb dose of 0.69 g/kg (corresponding to 7.66 g in clinic) was selected as the optimal dose because it was 90% of the effective dose and three adverse reactions were acceptable in this case. CONCLUSION: An integrated dose-response metabolomics strategy reflecting both therapeutic effects and adverse reactions was established for the first time, which we believe is helpful to uncover the mysterious veil of TCM dosage. In addition, this strategy benefits the modernization and internationalization of TCM, and broadens the application of metabolomics.

13.
Metabolites ; 12(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36295858

ABSTRACT

Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the gastrointestinal tract. Recent studies demonstrate that the phenolic tannin paeonol (Pae) attenuates UC in mouse models by downregulating inflammatory factors. However, its molecular mechanism for UC treatment has not been explored from the perspective of the gut microbiota and metabolomics. In this study, we investigated the effects of Pae on colonic inflammation, intestinal microbiota and fecal metabolites in 3% dextran sodium sulfate (DSS) induced BALB/c UC mice. Pae significantly improved the clinical index, relieved colonic damage, reduced cytokine levels, and restored the integrity of the intestinal epithelial barrier in UC mice. In addition, Pae increased the abundance of gut microbiota, partially reversed the disturbance of intestinal biota composition, including Lactobacillus and Bacteroides, and regulated metabolite levels, such as bile acid (BA) and short-chain fatty acid (SCFA). In conclusion, our study provides new insight on Pae remission of UC.

14.
Int J Nanomedicine ; 17: 5027-5046, 2022.
Article in English | MEDLINE | ID: mdl-36303804

ABSTRACT

Background: Ulcerative colitis (UC) is one of the intractable diseases recognized by the World Health Organization, and paeonol has been proven to have therapeutic effects. However, the low solubility of paeonol limits its clinical application. To prepare and optimize paeonol liposome, study its absorption mechanism and the anti-inflammatory activity in vitro and in vivo, in order to provide experimental basis for the further development of paeonol into an anti-inflammatory drug in the future. Methods: Paeonol loaded liposomes were prepared and optimized by thin film dispersion-ultrasonic method. The absorption mechanism of paeonol-loaded liposomes was studied by pharmacokinetics, in situ single-pass intestinal perfusion and Caco-2 cell monolayer model, the anti-inflammatory activity was studied in a mouse ulcerative model. Results: Box-Behnken response surface methodology permits to screen the best formulations. The structural and morphological characterization showed that paeonol was entrapped inside the bilayer in liposomes. Pharmacokinetic studies found that the AUC0-t of Pae-Lips was 2.78 times than that of paeonol suspension, indicating that Pae-Lips significantly improved the absorption of paeonol. In situ single intestinal perfusion and Caco-2 monolayer cell model results showed that paeonol was passively transported and absorbed, and was the substrate of P-gp, MRP2 and BCRP, and the Papp value of Pae-Lips was significantly higher than that of paeonol. In vitro and in vivo anti-inflammatory experiments showed that compared with paeonol, Pae-Lips exhibited excellent anti-inflammatory activity. Conclusion: In this study, Pae-Lips were successfully prepared to improve the oral absorption of paeonol. Absorption may involve passive diffusion and efflux transporters. Moreover, Pae-Lips have excellent anti-inflammatory activity in vitro and in vivo, which preliminarily clarifies the feasibility of further development of Pae-Lips into oral anti-inflammatory drugs.


Subject(s)
Liposomes , Neoplasm Proteins , Humans , Mice , Animals , Liposomes/chemistry , Caco-2 Cells , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Disease Models, Animal
15.
RSC Adv ; 12(42): 27453-27462, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276001

ABSTRACT

The antioxidant properties of the volatile oil of Acorus calamus in Lingzhu Pulvis may be enhanced by the introduction of Pickering emulsion technology based on the concept of "the combination of medicine and adjuvant". The characterization of each drinking tablet of Lingzhu Pulvis was conducted to determine the stabilizer. The optimal stabilizer concentration, oil-water ratio and preparation method of the Pickering emulsion were then determined and analyzed using NIR. The contents of malondialdehyde and peroxide in the volatile oils of each group were compared at different AIBA concentrations. The trends of the components were then analyzed by GC-MS. The pearl powder was screened as the stabilizer of the Pickering emulsion; the pearl powder concentration of 0.065 g mL-1 and the oil-water ratio of 9 : 11 were found to be the optimal emulsion formation conditions, and the high-pressure homogenization method was the optimal preparation method. The NIR analysis showed that the volatile oil was wrapped by the pearl powder and no new chemical structure formed in the Pickering emulsion. The Pickering emulsions had lower oxidation levels than the crude oil groups at AIBA concentrations of 5, 10, and 15 mg mL-1. The results of the GC-MS analysis showed that the antioxidant properties of the volatile components were significantly higher in the Pickering emulsion group compared to the crude oil group. Pickering emulsions can be used to enhance the antioxidant properties of volatile components in oil-containing solid formulations based on the concept of "the combination of medicine and adjuvant".

16.
Article in English | MEDLINE | ID: mdl-36133789

ABSTRACT

Purpose: To explore the clinical application of Baihe Dihuang Decoction. To provide certain data support and theoretical basis for the clinical application of Baihe Dihuang Decoction in the future. Methods: With "Baihe Rehmannia Tang" as the search term, the search was carried out on CNKI, VIP, Wanfang, PubMed and other databases. The statistical analysis of Baihe Dihuang decoction for treating diseases was obtained. Meta-analysis of the data was performed using RevMan 5.3 software to analyze the main therapeutic indicators of the disease. Results: According to the 83 valid literature that can be found, it is shown that 17 are used for the treatment of depression, 14 are used for the treatment of menopausal syndrome, 24 are used for the treatment of insomnia, and 28 are used for the treatment of other diseases. Conclusion: In the treatment of depression, menopausal syndrome, and insomnia combined with Baihe Dihuang Decoction can have a better therapeutic effect and diminish the incidence of adverse reactions. It provides a theoretical basis for the study and experimental study of its active components.

17.
Front Nutr ; 9: 927434, 2022.
Article in English | MEDLINE | ID: mdl-35990355

ABSTRACT

Valerian volatile oil can be used in the treatment of insomnia; however, the active components and mechanisms of action are currently unclear. Therefore, we used transcriptome sequencing and weight coefficient network pharmacology to predict the effective components and mechanism of action of valerian volatile oil in an insomnia model induced by intraperitoneal injection of para-Chlorophenylalanine (PCPA) in SD rats. Valerian essential oil was given orally for treatment and the contents of 5-hydroxytryptamine receptor 1 A (5-HT1AR), γ-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) in the hippocampus of rats in each group were detected by enzyme-linked immunosorbent assay (ELISA), western blot, Polymerase Chain Reaction (PCR), and immunohistochemistry. The results showed that after treatment with valerian essential oil, insomnia rats showed significantly prolonged sleep duration and alleviated insomnia-induced tension and anxiety. Regarding the mechanism of action, we believe that caryophyllene in valerian essential oil upregulates the 5-HT1AR receptor to improve the activity or affinity of the central transmitter 5-HT, increase the release of 5-HT, couple 5-HT with a G protein coupled receptor, convert adenosine triphosphate (ATP) into cAMP (catalyzed by ADCY5), and then directly regulate the downstream pathway. Following pathway activation, we propose that the core gene protein kinase PKA activates the serotonergic synapse signal pathway to increase the expression of 5-HT and GABA, thus improving insomnia symptoms and alleviating anxiety. This study provides a theoretical basis for the application of valerian volatile oil in health food.

18.
Drug Des Devel Ther ; 16: 2407-2422, 2022.
Article in English | MEDLINE | ID: mdl-35923932

ABSTRACT

Purpose: To investigate the effective components and possible mechanism of action of Lavandula angustifolia Mill. essential oil (LEO) in preventing vomiting through the olfactory pathway. Materials and Methods: A new network pharmacology-based method was established to analyze main components and pathways of LEO involved in antiemetic effects by introducing component content; biological activities of key proteins of the olfactory pathway and their corresponding compounds were verified by molecular docking technique; and finally pica in a rat model was established to verify the molecular mechanism of antiemetic effects of LEO by enzyme-linked immunosorbent assay (ELISA) to determine the serum 5-HT, substance P, and DA levels in each group and by immunohistochemistry to determine the contents of 5-HT3R, CaMKII and ERK1/2 proteins in the medulla oblongata tissue. Results: Network pharmacology combined with molecular docking analysis showed that the mechanism of the antiemetic effect of LEO may be related to (2Z)-3,7-dimethyl-2,6-octadienyl acetate, linalyl acetate, butanoic acid, hexyl ester, 4-hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate, .tau.-cadinol and other active ingredients, which regulate the cyclic adenosine monophosphate (cAMP) signaling pathway and the expression of BRAF, PDE and other targets on the pathway. An ELISA revealed that LEO reduced the levels of 5-hydroxytryptamine (5-HT), substance P, and dopamine in serum compared with the model group (P <0.05). Immunohistochemical analysis showed that LEO decreased the expression of 5-HT3R, CaMKII, and ERK1/2 proteins in the medulla oblongata of rats compared with the model group (P <0.01). Conclusion: LEO may achieve the antiemetic effect by reducing the content of 5-HT and inhibiting its related receptors, thereby regulating downstream Ca2+/CaMKII/ERK1/2 pathway of the cAMP signaling pathway.


Subject(s)
Antiemetics , Lavandula , Oils, Volatile , Acetates , Animals , Antiemetics/pharmacology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Lavandula/chemistry , MAP Kinase Signaling System , Molecular Docking Simulation , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Rats , Serotonin , Substance P
19.
Food Chem ; 397: 133731, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35908464

ABSTRACT

Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.


Subject(s)
Agaricales , Agaricales/chemistry , Anti-Inflammatory Agents , Antioxidants/chemistry , Mycelium , Phellinus , Polysaccharides/chemistry
20.
Front Pharmacol ; 13: 893552, 2022.
Article in English | MEDLINE | ID: mdl-35754501

ABSTRACT

Background: The 2020 edition of the Pharmacopoeia of the People's Republic of China (Chinese Pharmacopoeia 2020 edition) has 255 Chinese prescriptions with different dosage forms, accounting for 21.09% of the total prescriptions (1,209) in Chinese Pharmacopoeia 2020 edition. However, the scientific rationality of the phenomenon of "Different Dosage Forms of the Same Prescription" of Chinese proprietary medicine has been less explored. Based on the dosage form theory of "components in pills release slowly and take effect in slow-acting manner, while in powders release quickly and take effect in fast-acting way," we provided the in vitro dissolution experiment and in vivo pharmacokinetics of Chuanxiong Chatiao powders and pills in order to rationalize the phenomenon of "Different Dosage Forms of the Same Prescription" of Chuanxiong Chatiao prescription. Materials and Methods: Chuanxiong Chatiao powders and pills were prepared in the laboratory referring to the preparation methods in the Chinese Pharmacopoeia 2020 edition, and the contents of tetramethylpyrazine, ferulic acid, nodakenin, and isoimperatorin were determined by the external standard method. We measured the in vitro dissolution of four analytes of Chuanxiong Chatiao powders and pills according to the second method for dissolution determination (paddle method) in the Chinese Pharmacopoeia 2020 edition, and their corresponding contents in each sampling point were determined by LC-MS/MS. We also provided a pharmacokinetic study of Chuanxiong Chatiao powders and pills. Six female domestic rabbits were divided into two groups (powder and pill groups) and given Chuanxiong Chatiao powders and pills (9.85 g/kg) by surgical administration separately. Blood samples were collected at 5, 15, 30, 45, 60, 90, 120, 150, 180, 240, 360, 480, 720, and 1,440 min after drug administration to measure the plasma concentration of the four analytes by LC-MS/MS. Results: The results of in vitro dissolution experiment showed that the dissolution rate of four analytes in the powder group was greater than that of the pill group. However, the solubilities of tetramethylpyrazine and isoimperatorin were very low in the powder and pill, which may be related to their low solubility properties. The results of the in vivo pharmacokinetic study of Chuanxiong Chatiao powders and pills showed that T max (h) of ferulic acid and nodakenin in the powder group was 0.420 and 0.053 times that of the pill group and t 1/2 (h) of ferulic acid, nodakenin, and isoimperatorin of the powder group was 0.910, 0.262, and 0.661 times that of the pill group, respectively. Conclusion: The in vitro dissolution rate and in vivo pharmacokinetic parameters of four analytes in CXCTF could partly explain the scientific rationality of the classic theory of ", " as in Chinese, which is helpful for providing a basis for the comparison of subsequent dosage forms. The results of our studies also suggest the complexity of the design of dosage forms of Chinese proprietary medicines and imply that we should pay more attention to the scientific rationality of the phenomenon of "Different Dosage Forms of the Same Prescription."

SELECTION OF CITATIONS
SEARCH DETAIL
...