Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 7(10): 1676-1687, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729411

ABSTRACT

Aqueous electrochemical systems suffer from a low energy density due to a small voltage window of water (1.23 V). Using thicker electrodes to increase the energy density and highly concentrated "water-in-salt" (WIS) electrolytes to extend the voltage range can be a promising solution. However, thicker electrodes produce longer diffusion pathways across the electrode. The highly concentrated salts in WIS electrolytes alter the physicochemical properties which determine the transport behaviors of electrolytes. Understanding how these factors interplay to drive complex transport phenomena in WIS batteries with thick electrodes via deterministic analysis on the rate-limiting factors and kinetics is critical to enhance the rate-performance in these batteries. In this work, a multimodal approach-Raman tomography, operando X-ray diffraction refinement, and synchrotron X-ray 3D spectroscopic imaging-was used to investigate the chemical heterogeneity in LiV3O8-LiMn2O4 WIS batteries with thick porous electrodes cycled under different rates. The multimodal results indicate that the ionic diffusion in the electrolyte is the primary rate-limiting factor. This study highlights the importance of fundamentally understanding the electrochemically coupled transport phenomena in determining the rate-limiting factor of thick porous WIS batteries, thus leading to a design strategy for 3D morphology of thick electrodes for high-rate-performance aqueous batteries.

2.
ACS Appl Mater Interfaces ; 12(2): 2793-2804, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31846299

ABSTRACT

Designing materials with multiscale, hierarchical structure is critical to drive the advancement of new technology. Specifically, porous metals with multiscale porosity from nanometer to micrometer sizes would lead to enhanced physical and chemical properties-the micron-sized pores can increase the effective diffusivity of ion transport within the porous media, and the nano-sized pores provide high specific surface area, enabling functionalities that are unique to nanoporous metals. A new ternary precursor alloy selection concept utilizing the different mixing enthalpies is demonstrated in this work for the design of multiscale, bimodal porous copper from a simple, one-step dealloying of Cu-Fe-Al ternary alloy. The nanoporosity in the bimodal porous structure is formed from dealloying of the Cu-rich phase, whereas the microporosity is controlled by dissolving the Fe-rich phase, determined by both the initial Fe particle size and sintering profile. In addition to advancing the materials design method, the multiscale pore formation during dealloying was directly visualized and quantified via an interrupted in situ synchrotron X-ray nano-tomography. The 3D morphological analysis on tortuosity showed that the presence of the microporosity can compensate the increase of the diffusion path length due to nanoporosity, which facilitates diffusion within the porous structure. Overall the focus of the work is to introduce a new strategy to design multiscale porous metals with enhanced transport properties, and sheds light on the fundamental mechanisms on the 3D morphological evolution of the system using advanced synchrotron X-ray nano-tomography for future materials development and applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...