Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241757

ABSTRACT

Plant-based protein products, represented by "plant meat", are gaining more and more popularity as an alternative to animal proteins. In the present review, we aimed to update the current status of research and industrial growth of plant-based protein products, including plant-based meat, plant-based eggs, plant-based dairy products, and plant-based protein emulsion foods. Moreover, the common processing technology of plant-based protein products and its principles, as well as the emerging strategies, are given equal importance. The knowledge gap between the use of plant proteins and animal proteins is also described, such as poor functional properties, insufficient texture, low protein biomass, allergens, and off-flavors, etc. Furthermore, the nutritional and health benefits of plant-based protein products are highlighted. Lately, researchers are committed to exploring novel plant protein resources and high-quality proteins with enhanced properties through the latest scientific and technological interventions, including physical, chemical, enzyme, fermentation, germination, and protein interaction technology.


Subject(s)
Dairy Products , Meat , Animals , Eggs
2.
Curr Res Food Sci ; 5: 1342-1351, 2022.
Article in English | MEDLINE | ID: mdl-36082141

ABSTRACT

Poor solubility of wheat gluten proteins (WG) has negative impact on functional attributes such as gelation and emulsification, which limits it use in the food industry. In this study, WG underwent different degrees of phosphorylation using sodium tripolyphosphate (STP). Phosphoric acid groups were successfully incorporated in the WG via covalent bonding (C-N-P and C-O-P) involving hydroxyl and primary amino groups from WG. The introduction of phosphoric acid groups increased the negative charge of phosphorylation-WG, which caused the enhancement of electrostatic repulsion between proteins and reduced the droplet size in emulsions, thereby allowing proteins to be more efficiently dispersed in the solution system. The change of structure induced with phosphorylation improved hydration of protein, making the WG with higher solubility, thereby resulting in the improvement of its emulsification, foaming, thermal stability, and rheological properties. Therefore, WG can be modified by phosphorylation which caused an overall improvement of functional properties, thus facilitating the expansion of WG applications.

3.
Food Chem ; 397: 133807, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35917787

ABSTRACT

Low-cost wheat by-products have been modified to become an effective delivery system for curcumin. Wheat bran cellulose (WBC) and wheat gluten proteins (WPs) were co-assembled by a pH cycle and addition of sodium tripolyphosphate (STP). Fluorescence spectroscopy and zeta-potential evidenced that the embedding of WBC into the WPs favored the formation composites a relative unfolding state. Modifying the nanocomposite with STP lowered the Dh and PDI of the co-assembled structure. The nanocomplexes had a typical core-shell structure according to TEM characterization, where proteins aggregate to form a hydrophobic core and the hydrophilic WBC and STP crosslinked to form the shell. To improve the bioavailability of curcumin, it was encapsulated in WWBCs composites by participating in their structural co-assembly. In vitro simulated gastrointestinal digestion experiments showed that the curcumin encapsulated in WWBCs possessed gastrointestinal slow and controlled release function, with a final release of curcumin of 77.8 ± 2.3 %.


Subject(s)
Curcumin , Biological Availability , Cellulose/metabolism , Curcumin/chemistry , Dietary Fiber , Glutens/metabolism
4.
Food Chem ; 392: 133296, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35636191

ABSTRACT

The presence of a large number of hydrophobic groups and non-polar amino acids in the wheat gluten (WG) is responsible for its poor water solubility, greatly limiting its industrial applications. Our results showed that the solubility and zeta potential of WG were significantly (P < 0.05) improved with the increasing concentration of sodium tripolyphosphate (STP), while the average particle size of WG was decreased. After WG was incubated with TGase, phosphorylation pretreatment significantly increased apparent viscosity of WG dispersant solution, suggesting that phosphorylation treatment promoted the generation of cross-linked polymers. In addition, phosphorylation pretreatment enhanced hydrophobic interactions and disulfide bond formation between TGase-induced WG gels, thus leading to a more homogeneous and dense three-dimensional network structure of gel, which was confirmed by SEM micrographs. To summarize, STP can be used as an effective additive for the modification of WG with an improved degree of TGase-mediated cross-linking for better rheological and gel properties.


Subject(s)
Transglutaminases , Triticum , Gels , Glutens/chemistry , Phosphorylation , Transglutaminases/metabolism , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL