Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 14(1): 1855, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253676

ABSTRACT

In order to facilitate the analysis and processing of optical signals, an FPGA-based CCD signal acquisition and data transmission system is designed in this work. The system uses an FPGA as the main control device, the TCD1304DG/AP chip as the optical signal detector, and the CYUSB3KIT-003 development board product by Cypress for data transmission. Verilog and Python languages are employed for modular design and on-board verification. Through the coordination of each module, the system successfully achieves CCD signal data acquisition and transmission.

2.
Int. microbiol ; 25(3): 571-586, Ago. 2022. mapas, ilus
Article in English | IBECS | ID: ibc-216216

ABSTRACT

The photovoltaic power station in Qinghai has been built for 8 years; however, its impact on the regional soil ecological environment has not been studied in depth. To reveal the structure and distribution pattern of archaeal communities in desert soil under the influence of a large photovoltaic power station, a comparative study was carried out between the soil affected by photovoltaic panels and the bare land samples outside the photovoltaic station in Gonghe, Qinghai Province. The abundance, community structure, diversity, and distribution characteristics of archaea were analyzed by quantitative PCR and Illumina-MiSeq high-throughput sequencing, and the main environmental factors affecting the variation in soil archaeal community were identified by RDA. The contribution rate of environmental factors and human factors to microbial community diversity was quantitatively evaluated by VPA. The results showed that there was no significant difference in soil nutrients and other physicochemical factors between the photovoltaic power station and bare land. Thaumarchaeota was the dominant archaeal phylum in the area, accounting for more than 99% of archaeal phylum, while at the level of genus, Nitrososphaera was the dominant archaeal genera. There was no significant difference in archaeal community structure between and under different types of PV panels. The analysis has shown that the construction of a photovoltaic station has little effect on the community structure of soil archaea in a desert area, and it was speculated that the selection of niche played a leading role in the distribution pattern of soil archaeal community. This study provides the basis for a scientific understanding of the characteristics and distribution patterns of soil archaeal communities affected by the construction of a photovoltaic power station.(AU)


Subject(s)
Humans , High-Throughput Nucleotide Sequencing , Power Plants , Solar Energy , Photovoltaic Energy , Soil Microbiology , Archaea , China , Microbiology
3.
Int Microbiol ; 25(3): 571-586, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35347497

ABSTRACT

The photovoltaic power station in Qinghai has been built for 8 years; however, its impact on the regional soil ecological environment has not been studied in depth. To reveal the structure and distribution pattern of archaeal communities in desert soil under the influence of a large photovoltaic power station, a comparative study was carried out between the soil affected by photovoltaic panels and the bare land samples outside the photovoltaic station in Gonghe, Qinghai Province. The abundance, community structure, diversity, and distribution characteristics of archaea were analyzed by quantitative PCR and Illumina-MiSeq high-throughput sequencing, and the main environmental factors affecting the variation in soil archaeal community were identified by RDA. The contribution rate of environmental factors and human factors to microbial community diversity was quantitatively evaluated by VPA. The results showed that there was no significant difference in soil nutrients and other physicochemical factors between the photovoltaic power station and bare land. Thaumarchaeota was the dominant archaeal phylum in the area, accounting for more than 99% of archaeal phylum, while at the level of genus, Nitrososphaera was the dominant archaeal genera. There was no significant difference in archaeal community structure between and under different types of PV panels. The analysis has shown that the construction of a photovoltaic station has little effect on the community structure of soil archaea in a desert area, and it was speculated that the selection of niche played a leading role in the distribution pattern of soil archaeal community. This study provides the basis for a scientific understanding of the characteristics and distribution patterns of soil archaeal communities affected by the construction of a photovoltaic power station.


Subject(s)
Archaea , Microbiota , Archaea/genetics , Humans , RNA, Ribosomal, 16S , Soil/chemistry , Soil Microbiology
4.
Environ Sci Pollut Res Int ; 28(14): 17506-17518, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33400111

ABSTRACT

Photovoltaic power generation is an important clean energy alternative to fossil fuels. To reduce CO2 emissions, the Chinese government has ordered the construction of a large number of photovoltaic (PV) panels to generate power in the past two decades; many are located in desert areas because of the sufficient light conditions. Large-scale PV construction in desert areas can alter the local microclimate and soil conditions, thereby affecting the growth of vegetation. However, few studies have focused on the effects of PV panels on the environment of desert areas. In this study, we investigated the effects of PV panels on soil moisture and temperature via a whole-year field experiment at a PV power plant in a desert area in western China. The in situ soil moisture and temperature at a depth of 0-0.4 m were measured under three types of PV shading conditions: shaded by fixed-tilt (FIX) PV panels, shaded by oblique single-axis (OSA) PV panels, and no shading. The results showed that the soil temperature and moisture at sites under PV shading were significantly affected compared with those at sites without shading. PV panels increased the average soil temperature during winter but decreased it during the other three seasons. Moreover, the warming effect of FIX PV panels on the soil is more apparent than that of OSA PV panels. PV panels have positive effects on soil moisture. Compared with that at the sites without shaded areas, the average soil moisture under the FIX PV panels and under the OSA PV panels increased by 14.7% and by 11.1%, respectively. These data provide support for future studies on vegetation restoration around PV power plants in desert areas.


Subject(s)
Microclimate , Soil , China , Desert Climate , Ecosystem , Seasons , Temperature , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...