Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(8): e19027, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600358

ABSTRACT

Ligusticum chuanxiong is a common traditional edible-medicinal herb that has various pharmacological activities. However, its effects on Saccharomyces cerevisiae (S. cerevisiae) remains unknown. In this study, we found that water extract of Ligusticum chuanxiong (abbreviated as WEL) exhibited excellent free radical scavenging ability in-vitro. Moreover, WEL treatment could delay the aging of S. cerevisiae, an important food microorganism sensitive to reactive oxygen species (ROS) stress. Biochemical analyses revealed that WEL significantly increased the activity of antioxidant enzymes in S. cerevisiae, including superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), as well as their gene expression. As a result, ROS level was significantly decreased and accompanied with the decline of malondialdehyde (MDA), which represented a state of low oxidative stress. The reduction of oxidative stress could elevate S. cerevisiae's ethanol fermentation efficiency. Taken together, WEL plays a protective role against S. cerevisiae aging via improving antioxidant activity.

2.
Fish Shellfish Immunol ; 134: 108639, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36841518

ABSTRACT

High temperature is a main cause to result in the outbreak of tilapia streptococcal disease. However, the underlying mechanisms are not well understood. In this study, we first confirmed that tilapia infected with Streptococcus agalactiae (S. agalactiae) had a higher mortality at high temperature (35 °C) than that at normal temperature (28 °C). Subsequently, the effects of high temperature on gene expression pattern of S. agalactiae and intestinal microbiota of tilapia were respectively detected by RNA-seq and 16S rDNA sequencing. RNA-seq identified 357 differentially expressed genes (DEGs) in S. agalactiae cultured at 28 °C and 35 °C. GO and KEGG analysis showed that these DEGs were highly involved in metabolic processes, including glucose, lipid and amino acid metabolisms, which indicates that S. agalactiae have stronger vitality and are likely to be more infectious under high temperature. Microbiota analysis revealed that high temperature could influence the bacterial community composition of tilapia intestine, accompanied by changes in intestinal structure. Compared to feed at 28 °C, the total bacterial species as well as pathogens, such as norank_f__Rhizobiales_Incertae_Sedis, Pseudorhodoplanes, Ancylobacter, in tilapia intestine were significantly increased at 35 °C, which may weaken the immune resistance of tilapia. Taken together, our results suggest that high temperature evoked tilapia susceptible to S. agalactiae should be the combined effect of enhanced S. agalactiae metabolism and dysregulated tilapia intestinal microbiota.


Subject(s)
Disease Outbreaks , Fish Diseases , Gene Expression Regulation, Bacterial , Hot Temperature , Streptococcal Infections , Streptococcus agalactiae , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Fish Diseases/epidemiology , Fish Diseases/microbiology , Tilapia , Gastrointestinal Microbiome/physiology , Gene Expression Regulation, Bacterial/physiology , Biodiversity , Animals
3.
STAR Protoc ; 3(2): 101398, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35600921

ABSTRACT

Spermatogenesis generates heterologous cell populations which, if not distinguished clearly, often hinder mechanistic and etiological studies. Here, we present a protocol to identify and isolate populations of mouse spermatogenic cells, including spermatogonial stem cells (SSCs), spermatocytes, and haploid spermatids. We also describe absolute quantification of mRNA copy numbers in SSCs. The isolated cells can be used for analyzing nascent protein synthesis and protein degradation, two main events that maintain cellular proteostasis important for healthy and long-term production of male gametes. For complete details on the use and execution of this protocol, please refer to Zou et al. (2021).


Subject(s)
Adult Germline Stem Cells , Spermatids , Animals , Haploidy , Male , Mice , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogenesis/genetics
4.
iScience ; 24(12): 103396, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34825148

ABSTRACT

Maintaining proteostasis is important for animal development. How proteostasis influences spermatogenesis that generates male gametes, spermatozoa, is not clear. We show that testis-specific paralog of ribosomal large subunit protein RPL39, RPL39L, is required for mouse spermatogenesis. Deletion of Rpl39l in mouse caused reduced proliferation of spermatogonial stem cells, malformed sperm mitochondria and flagella, leading to sub-fertility in males. Biochemical analyses revealed that lack of RPL39L deteriorated protein synthesis and protein quality control in spermatogenic cells, partly due to reduced biogenesis of ribosomal subunits and ribosome homeostasis. RPL39/RPL39L is likely assembled into ribosomes via H/ACA domain containing NOP10 complex early in ribosome biogenesis pathway. Furthermore, Rpl39l null mice exhibited compromised regenerative spermatogenesis after chemical insult and early degenerative spermatogenesis in aging mice. These data demonstrate that maintaining proteostasis is important for spermatogenesis, of which ribosome homeostasis maintained by ribosomal proteins coordinates translation machinery to the regulation of cellular growth.

5.
Int J Biochem Cell Biol ; 139: 106070, 2021 10.
Article in English | MEDLINE | ID: mdl-34428590

ABSTRACT

Accumulating evidences suggest that the composition and functional roles of ribosomes are heterogeneous in cells, partly due to the temporal-spatial expression of paralogous ribosomal proteins (RPs), of which functional relationships remain largely unexplored. In mouse, the X chromosome-linked RPL39 and its male germline specific paralog RPL39L are thought to express mutually exclusively due to the meiotic sex chromosome inactivation, hinders the understanding of their functional relationships. In the present study, we investigated the expression and functional relations of Rpl39 and Rpl39l in a proliferative mouse cell line, in which both genes are expressed simultaneously, with the expression level of Rpl39 higher than that of Rpl39l. Disruption of Rpl39 via CRISPR/Cas9 method caused decreased cell proliferation, nascent protein synthesis and altered mitochondrial functions, whereas double mutations of Rpl39 and Rpl39l augmented these phenotypes, suggesting that both RPs contribute to the cellular physiology. Consistently, overexpression of Rpl39, Rpl39l or an alanine mutant of RPL39, rescued cell proliferation similarly in Rpl39-/-::Rpl39l-/- dual gene null cells. Deletion of Rpl39l induced compensatory expression of Rpl39, rendering the deleterious effects of Rpl39l mutation. Supporting this, Rpl39l mutation was more detrimental to cells under a low serum condition, under which the compensatory expression of Rpl39 was inhibited. Moreover, the low serum condition induced expression of both genes, suggesting that they possess stress responsive roles. Taken together, these data indicate that both RPL39 and RPL39L influence cell proliferation via protein synthesis and mitochondrial functions, suggesting a link between protein translation and cellular metabolism through these ribosomal protein paralogs.


Subject(s)
Ribosomes , Animals , Cell Proliferation , Mice , Mitochondria , Protein Biosynthesis
6.
Hum Reprod ; 34(3): 414-423, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30629171

ABSTRACT

STUDY QUESTION: Are genetic abnormalities in CATSPER (cation channel of sperm) genes associated with idiopathic male infertility with normal semen parameters and, if so, how do they affect male fertility? SUMMARY ANSWER: A novel copy number variation (CNV) in CATSPER2 causes idiopathic male infertility with normal semen parameters by disrupting the ability of sperm to penetrate viscous media, undergo hyperactivation and respond to progesterone. WHAT IS KNOWN ALREADY: CATSPER is the principle Ca2+ channel mediating extracellular Ca2+ influx into spermatozoa. Although several case reports have suggested a causal relationship between CATSPER disruption and human male infertility, whether genetic abnormalities in CATSPER genes are associated with idiopathic male infertility with normal semen parameters remains unclear. STUDY DESIGN, SIZE, DURATION: Spermatozoa were obtained from men attending the reproductive medical center at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China between January 2014 and June 2016. In total, 120 men from infertile couples and 20 healthy male donors were selected to take part in the study, based on their normal semen parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: CATSPER and KSPER currents were assessed using the whole-cell patch-clamp technique. Whole-genome sequencing and TaqMan® CNV assays were performed to identify genetic variations. The expression levels of genes encoding the CATSPER complex were measured by quantitative real-time PCR and Western blot. Sperm motion characteristics and hyperactivation were examined with a computer-aided sperm analysis (CASA) system. Sperm responses to progesterone, assessed as increases in CATSPER current and intercellular Ca2+ concentrations ([Ca2+]i), as well as inducement of penetration ability and acrosome reaction, were examined by means of whole-cell patch-clamp technique, single-sperm [Ca2+]i imaging, penetration into methylcellulose assay and chlortetracycline staining, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: An infertile man with complete disruption of CATSPER current was identified. This individual has a novel CNV which disrupts one gene copy in the region 43894500-43950000 in chromosome 15 (GRCh37.p13 Primary Assembly, nsv3067119), containing the whole DNA sequence of CATSPER2. This CNV affected the expression of CATSPER2, resulting in dramatically reduced levels of CATSPER2 proteins in the individual's spermatozoa. Although this individual exhibited normal semen parameters, his spermatozoa showed impaired penetration ability, deficient hyperactivation, and did not respond to progesterone, in terms of monovalent current potentiation, [Ca2+]i increase, penetration ability enhancement and acrosome reaction inducement, which may explain the individual's idiopathic infertility. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Our novel findings require more cases to support the CATSPER2 CNV identified in this study as a common cause of idiopathic male infertility in patients with normal semen parameters. Therefore, caution must be taken when extrapolating the use of this CNV as a potential biomarker for idiopathic male infertility. WIDER IMPLICATIONS OF THE FINDINGS: The findings from the unique human CATSPER 'knockout' model in this study not only confirm the essential roles of CATSPER in mediating progesterone response and regulating hyperactivation in human spermatozoa but also reveal that disruption of CATSPER current is a significant factor causing idiopathic male infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by National Natural Science Foundation of China (81771644 and 31400996 to T.L.; 31230034 to X.Z.); National Basic Research Program of China (973 Program, 2015CB943003 to X.Z.); National Key Research and Development Program of China (2016YFC1000905 to T.L.); Natural Science Foundation of Jiangxi, China (20121BBG70021 and GJJ12015 to X.Z.; 20161BAB204167 and 20171ACB21006 to T.L.) and the open project of National Population and Family Planning Key Laboratory of Contraceptives and Devices Research (No. 2016KF07 to T.L.). The authors have no conflicts of interest to declare.


Subject(s)
Calcium Channels/genetics , DNA Copy Number Variations , Infertility, Male/genetics , Progesterone/physiology , Semen/physiology , Seminal Plasma Proteins/genetics , Spermatozoa/physiology , Acrosome Reaction , Adult , Calcium Signaling , Cell Proliferation , Humans , Hydrogen-Ion Concentration , Male , Patch-Clamp Techniques , Semen Analysis , Sperm Motility , Viscosity , Whole Genome Sequencing
7.
Hum Reprod ; 32(2): 290-298, 2017 02.
Article in English | MEDLINE | ID: mdl-28031325

ABSTRACT

STUDY QUESTION: Is diethylstilbestrol (DES), a prototypical endocrine-disrupting chemical (EDC), able to induce physiological changes in human spermatozoa and affect progesterone actions? SUMMARY ANSWER: DES promoted Ca2+ flux into human spermatozoa by activating the cation channel of sperm (CatSper) and suppressed progesterone-induced Ca2+ signaling, tyrosine phosphorylation and sperm functions. WHAT IS KNOWN ALREADY: DES significantly impairs the male reproductive system both in fetal and postnatal exposure. Although various EDCs affect human spermatozoa in a non-genomic manner, the effect of DES on human spermatozoa remains unknown. STUDY DESIGN, SIZE, DURATION: Sperm samples from normozoospermic donors were exposed in vitro to a range of DES concentrations with or without progesterone at 37°C in a 5% CO2 incubator to mimic the putative exposure to this toxicant in seminal plasma and the female reproductive tract fluids. The incubation time varied according to the experimental protocols. All experiments were repeated at least five times using different individual sperm samples. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human sperm intracellular calcium concentrations ([Ca2+]i) were monitored with a multimode plate reader following sperm loading with Ca2+ indicator Fluo-4 AM, and the whole-cell patch-clamp technique was performed to record CatSper and alkalinization-activated sperm K+ channel (KSper) currents. Sperm viability and motility parameters were assessed by an eosin-nigrosin staining kit and a computer-assisted semen analysis system, respectively. The ability of sperm to penetrate into viscous media was examined by penetration into 1% methylcellulose. The sperm acrosome reaction was measured using chlortetracycline staining. The level of tyrosine phosphorylation was determined by western blot assay. MAIN RESULTS AND THE ROLE OF CHANCE: DES exposure rapidly increased human sperm [Ca2+]i dose dependently and even at an environmentally relevant concentration (100 pM). The elevation of [Ca2+]i was derived from extracellular Ca2+ influx and mainly mediated by CatSper. Although DES did not affect sperm viability, motility, penetration into viscous media, tyrosine phosphorylation or the acrosome reaction, it suppressed progesterone-stimulated Ca2+ signaling and tyrosine phosphorylation. Consequently, DES (1-100 µM) significantly inhibited progesterone-induced human sperm penetration into viscous media and acrosome reaction. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although DES has been shown to disturb progesterone actions on human spermatozoa, this study was performed in vitro, and caution must be taken when extrapolating the results in practical applications. WIDER IMPLICATIONS OF THE FINDINGS: The present study revealed that DES interfered with progesterone-stimulated Ca2+ signaling and tyrosine phosphorylation, ultimately inhibited progesterone-induced human sperm functions and, thereby, might impair sperm fertility. The non-genomic manner in which DES disturbs progesterone actions may be a potential mechanism for some estrogenic endocrine disruptors to affect human sperm function. STUDY FUNDING/COMPETING INTERESTS: National Natural Science Foundation of China (No. 31400996); Natural Science Foundation of Jiangxi, China (No. 20161BAB204167 and No. 20142BAB215050); open project of National Population and Family Planning Key Laboratory of Contraceptives and Devices Research (No. 2016KF07) to T. Luo; National Natural Science Foundation of China (No. 81300539) to L.P. Zheng. The authors have no conflicts of interest to declare.


Subject(s)
Calcium Channels/metabolism , Diethylstilbestrol/pharmacology , Estrogens, Non-Steroidal/pharmacology , Progesterone/pharmacology , Spermatozoa/drug effects , Acrosome Reaction/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Dose-Response Relationship, Drug , Humans , Male , Phosphorylation/drug effects , Sperm Motility/drug effects , Spermatozoa/metabolism
8.
J Toxicol Sci ; 41(4): 543-9, 2016.
Article in English | MEDLINE | ID: mdl-27432240

ABSTRACT

The herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) is globally used in agriculture and has been linked to human sperm abnormalities in vivo. However, its effects on ejaculated human spermatozoa in vitro have not been characterized. Therefore, we examined the effects of 2,4-D on the functions of ejaculated human spermatozoa in vitro, including: sperm motility, the ability to move through a viscous medium, capacitation, and the acrosome reaction. Different doses of 2,4-D (10 nM, 100 nM, 1 µM, 10 µM, 100 µM, and 200 µM) were applied to human spermatozoa prepared from normal fresh semen samples. The results indicated that 2,4-D did not affect the viability, capacitation, or spontaneous acrosome reactions of human spermatozoa, but it dose-dependently inhibited the total motility, progressive motility, ability to penetrate viscous medium, and progesterone-induced capacitation and acrosome reaction rates. These results suggest that exposure to 2,4-D and its accumulation in the seminal plasma and follicular fluid might increase the risk of infertility. Our findings provide new insights for understanding the male reproductive toxicity of 2,4-D.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Fertility/drug effects , Spermatozoa/drug effects , Acrosome Reaction/drug effects , Adult , Dose-Response Relationship, Drug , Humans , Male , Progesterone/pharmacology , Risk Assessment , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/pathology
9.
Biochem Biophys Res Commun ; 478(1): 501-506, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27143628

ABSTRACT

Ketamine, a dissociative anesthetic, which was widely used in human and animal medicine, has become a popular recreational drug, as it can induce hallucinatory effects. Ketamine abuse can cause serious damage to many aspects of the organism, mainly reflected in the nervous system and urinary system. It has also been reported that ketamine can impair the male genital system. However, the detailed effect of ketamine on human spermatozoa remains unclear. Thus, we investigated the in vitro effects of ketamine on human sperm functions, to elucidate the underlying mechanism. Human sperm were treated in vitro with different concentrations of ketamine (0, 0.125, 0.25, 0.5, 1 g/L). The results showed that 0.25-1 g/L ketamine inhibited sperm total motility, progressive motility and linear velocity, in a dose-dependent manner. In addition, the sperm's ability to penetrate viscous medium and the progesterone-induced acrosome reaction were significantly inhibited by ketamine. Ketamine did not affect sperm viability, capacitation and spontaneous acrosome reaction. The intracellular calcium concentration ([Ca(2+)]i), which is a central factor in the regulation of human sperm function, was decreased by ketamine (0.125-1 g/L) in a dose-dependent manner. Furthermore, the currents of the sperm-specific Ca(2+) channel, CatSper, which modulates Ca(2+) influx in sperm, were inhibited by ketamine (0.125-1 g/L) in a dose-dependent manner. Our findings suggest that ketamine induces its toxic effects on human sperm functions by reducing sperm [Ca(2+)]i through inhibition of CatSper channel.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Ketamine/administration & dosage , Sperm Motility/physiology , Spermatozoa/drug effects , Spermatozoa/physiology , Acrosome Reaction/drug effects , Acrosome Reaction/physiology , Anesthetics, Dissociative/administration & dosage , Calcium Signaling/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Male , Sperm Motility/drug effects
10.
Tohoku J Exp Med ; 238(4): 295-303, 2016 04.
Article in English | MEDLINE | ID: mdl-27063420

ABSTRACT

It is well known that there has been a worldwide decrease in human male fertility in recent years. One of the main factors affecting this is environmental pollution. Lead is one of the major heavy metal contaminants that threaten the health of animals and human beings in China. It preferentially accumulates in male reproductive organs and can be up to 10 µM in human seminal plasma. Lead impairs mammalian spermatogenesis and sperm quality in vivo. It also inhibits sperm functions in vitro but the underlying mechanisms remain unclear. Therefore, we aimed to investigate the in vitro toxicity of lead on human sperm functions and to elucidate the underlying mechanisms. Semen samples were collected from 20 healthy volunteers with different careers and backgrounds living in Nanchang, Jiangxi. Human sperm suspensions were treated with different concentrations of lead acetate (0, 0.5, 2.5, 10, 50, and 100 µM) and the viability, motility, capacitation and progesterone-induced acrosome reaction were examined. Treatment with 10-100 µM lead acetate dose-dependently inhibited total and progressive motility measures, capacitation and progesterone-induced acrosome reaction. It also dose-dependently decreased the intracellular concentrations of cyclic adenosine monophosphate (cAMP) and calcium ([Ca(2+)]i), and reduced the tyrosine phosphorylation of sperm proteins, all of which are thought to be key factors in the regulation of sperm function. Our findings suggest that lead inhibits human sperm functions by reducing the levels of sperm intracellular cAMP, [Ca(2+)]i and tyrosine phosphorylation of sperm proteins in vitro.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Lead/pharmacology , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Humans , Male , Phosphorylation , Spermatozoa/cytology , Tyrosine/metabolism
11.
Reprod Toxicol ; 60: 69-75, 2016 04.
Article in English | MEDLINE | ID: mdl-26867864

ABSTRACT

Matrine, a bioactive alkaloid widely used in Chinese medicine, inhibits mouse sperm functions in vitro. In this study, we investigated the reproductive toxicity of matrine to male mice in vivo. C57BL/6J mice were administered with daily doses of 0, 1, 10 and 50mg/kg matrine by intraperitoneal injection for 30 days. The results showed that matrine did not affect testis size, testis weight, sperm count and sperm viability, but it significantly inhibited total motility, progressive motility, linear velocity, capacitation and the progesterone-induced acrosome reaction of mouse sperm. Furthermore, the intracellular Ca(2+) concentration ([Ca(2+)]i), a key regulator of sperm function, was reduced in sperm of matrine-exposed mice. The current and gene expression of the sperm specific Ca(2+) channel, CatSper, which modulates Ca(2+) influx in sperm, were decreased in testes of matrine-exposed mice. These results indicate that matrine inhibits mouse sperm functions by a [Ca(2+)]i-related mechanism via CatSper channel.


Subject(s)
Alkaloids/toxicity , Calcium/metabolism , Quinolizines/toxicity , Spermatozoa/drug effects , Animals , Calcium Channels/genetics , Calcium Channels/physiology , Male , Mice, Inbred C57BL , Sperm Capacitation/drug effects , Sperm Count , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/physiology , Testis/anatomy & histology , Testis/drug effects , Matrines
12.
Tohoku J Exp Med ; 235(2): 103-9, 2015 02.
Article in English | MEDLINE | ID: mdl-25749352

ABSTRACT

Testis-specific proteins, synthesized during spermatogenesis and spermiogenesis, are necessary for spermatid differentiation and/or for mature sperm function during fertilization. However, majority of these genes have neither been identified nor fully characterized. Testis developmental related gene 1 (TDRG1), a newly identified human testis-specific gene, encodes a 100-amino-acid protein without any characterized protein domains, and it may play a role in spermatogenesis. However, whether this human-specific protein is important for mature sperm function remains unclear. As an initial effort, in this study, we aimed to systematically investigate the expression and localization of TDRG1 in normal human spermatozoa. Thus, immunohistochemistry was used to analyze the distribution of TDRG1 in human testis. Reverse transcription-polymerase chain reaction, western blot analysis and indirect immunofluorescence were used to determine the expression and localization of TDRG1 in normal human spermatozoa. The immunohistochemistry results showed that the TDRG1 protein was expressed in spermatogenic cells in the seminiferous tubules of human testis. Interestingly, the TDRG1 was more abundant in spermatogenic cells at the late stages of spermatogenesis. The TDRG1 antibody specifically recognized an 11-kDa protein only in soluble extracts from normal human spermatozoa. Indirect immunofluorescence assays indicated that TDRG1 located in the midpiece, principal piece and flagellum of normal human spermatozoa. In conclusion, TDRG1 was found not only in spermatogonia, but also in spermatozoa. The localization of TDRG1 in human normal spermatozoa implies its potential regulatory role in sperm motility.


Subject(s)
Proteins/metabolism , Spermatozoa/metabolism , Adult , Fluorescent Antibody Technique , Humans , Male , Protein Transport , Proteins/genetics , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatozoa/cytology , Testis/metabolism
13.
Cell Physiol Biochem ; 35(1): 374-85, 2015.
Article in English | MEDLINE | ID: mdl-25591778

ABSTRACT

BACKGROUND: Matrine is a bioactive alkaloid that has a variety of pharmacological effects and is widely used in Chinese medicine. However, its effects on male reproduction are not well known. In this study, we aimed to investigate the in vitro toxicity of matrine on mature mouse sperm. METHODS: Mouse cauda epididymal sperm were exposed to matrine (10-200 µM) in vitro. The viability, motility, capacitation, acrosome reaction and fertilization ability of the mouse sperm were examined. Furthermore, the intracellular calcium concentration ([Ca(2+)]i), calcium (Catsper) and potassium (Ksper) currents, and phosphorylation of extracellular signal regulated kinases 1/2 (p-ERK1/2) of the sperm were analyzed. RESULTS: After exposure to 100 µM or more of matrine, mouse cauda epididymal sperm exhibited a significant reduction in total motility, progressive motility, linear velocity and acrosome reaction rate induced by Ca(2+) ionophore A23187. As a result, the fertilization ability of mouse sperm was remarkably decreased by matrine. Our data further demonstrated that matrine significantly reduced sperm [Ca(2+)]i and [Ca(2+)]i-related p-ERK1/2; however, both the CatSper and KSper currents, which are thought to interactively regulate Ca(2+) influx in sperm, were not affected by matrine. CONCLUSION: Our findings indicate that matrine inhibits mouse sperm function by reducing sperm [Ca(2+)]i and suppressing the phosphorylation of ERK1/2.


Subject(s)
Alkaloids/pharmacology , Calcium/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Quinolizines/pharmacology , Spermatozoa/drug effects , Acrosome Reaction/drug effects , Aniline Compounds/chemistry , Animals , Calcimycin/pharmacology , Female , Fertilization in Vitro/drug effects , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Patch-Clamp Techniques , Phosphorylation/drug effects , Potassium/metabolism , Sperm Motility/drug effects , Spermatozoa/chemistry , Spermatozoa/metabolism , Xanthenes/chemistry , Matrines
14.
Reprod Toxicol ; 51: 14-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25463531

ABSTRACT

Emodin, a bioactive anthraquinone widely used in Chinese traditional medicine, disrupts mouse testicular gene expression in vivo. In this study, we investigated the toxicity of emodin to human sperm in vitro. Different doses of emodin (25, 50, 100, 200 and 400µM) were applied to ejaculated human sperm. The results indicated that 100, 200 and 400µM emodin significantly inhibited the total motility, progressive motility and linear velocity of human sperm. In addition, sperm's ability to penetrate viscous medium together with progesterone induced capacitation and acrosome reaction was also adversely affected by emodin. In contrast, emodin did not affect sperm viability. Furthermore, intracellular Ca(2+) concentration ([Ca(2+)]i) and tyrosine phosphorylation, which serve as key regulators of sperm function, were dose-dependently reduced by emodin (50-400µM). These results suggest that emodin inhibits human sperm functions by reducing sperm [Ca(2+)]i and suppressing tyrosine phosphorylation in vitro.


Subject(s)
Emodin/toxicity , Spermatozoa/drug effects , Calcium/metabolism , Humans , Male , Phosphorylation , Progesterone , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/physiology , Tyrosine/metabolism
15.
Sheng Li Ke Xue Jin Zhan ; 45(6): 475-8, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25872360
SELECTION OF CITATIONS
SEARCH DETAIL
...