Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Hum Vaccin Immunother ; 20(1): 2406065, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39327639

ABSTRACT

Candida albicans Is a leading cause of nosocomial bloodstream infections, particularly in immunocompromised patients. Current therapeutic strategies are insufficient, highlighting the need for effective vaccines. This study aimed to evaluate the efficacy of a dual-antigen fusion protein vaccine (AH) targeting the Als3 and Hyr1 proteins of C. albicans, using AlPO4 as an adjuvant. The AH vaccine was constructed by fusing Als317-432 and Hyr125-350 proteins, and its immunogenicity was tested in BALB/c mice and New Zealand white rabbits. Mice received three intramuscular doses of the vaccine combined with AlPO4, followed by a lethal challenge with C. albicans SC5314. Survival rates, antibody responses, cytokine production, fungal burdens, and organ pathology were assessed. The vaccine's efficacy was also validated using rabbit serum. Mice vaccinated with the AH-AlPO4 combination exhibited significantly higher antibody titers, particularly IgG and its subclasses, compared to controls (p < .001). The survival rate of vaccinated mice was 80% post-infection, significantly higher than the control group (p < .01). Vaccinated mice showed reduced fungal loads in the blood, kidneys, spleen, and liver (p < .05). Increased levels of interferon gamma and interleukin (IL)-17A were observed, indicating robust T helper (Th) 1 and Th17 cell responses. Vaccination mitigated organ damage, with kidney and liver pathology scores significantly lower than those of unvaccinated mice (p < .05). Rabbit serum with polyclonal antibodies demonstrated effective antifungal activity, confirming vaccine efficacy across species. The AH-AlPO4 vaccine effectively induced strong immune responses, reduced fungal burden, and protected against organ pathology in C. albicans infections. These findings support further development of dual-antigen vaccine strategies.


Candida, a fungus, is a major cause of bloodstream infections, especially in critical care settings. This study focused on developing a vaccine to protect against Candida infection. The vaccine targeted two key proteins, Als3p and Hyr1p, found on the surface of Candida, using a combination of these proteins. To create the vaccine, we used Als3p and Hyr1p to form a fusion protein called AH, and tested the vaccine on mice, administering it with different adjuvants (substances that enhance the immune response). The results showed that the AH vaccine, particularly when combined with the adjuvant AlPO4, induced a strong immune response in mice. This response included the production of specific antibodies and immune cells that are crucial for defending against Candida infections. Furthermore, mice receiving the AH-AlPO4 vaccine showed significantly better survival rates and lower levels of fungal infection compared to the control group or another experimental group. The vaccine also protected vital organs, such as the kidneys and liver, from Candida-induced damage. Additionally, we used rabbit serum to validate the efficacy of the vaccine, providing cross-species confirmation of its effectiveness. The study demonstrated the potential of the AH vaccine in eliciting robust immune responses and reducing the severity of Candida albicans infections. In summary, this research introduces a promising AH vaccine, which shows effectiveness in protecting against Candida infections. The study's innovative approach and positive results contribute to the ongoing efforts to develop vaccines against fungal infections, addressing a critical healthcare challenge. Further research is needed to explore the vaccine's long-term effectiveness and safety for potential use in clinical settings.


Subject(s)
Adjuvants, Immunologic , Antibodies, Fungal , Antigens, Fungal , Candida albicans , Candidiasis , Fungal Vaccines , Mice, Inbred BALB C , Recombinant Fusion Proteins , Animals , Fungal Vaccines/immunology , Fungal Vaccines/administration & dosage , Candida albicans/immunology , Candidiasis/prevention & control , Candidiasis/immunology , Antibodies, Fungal/blood , Antibodies, Fungal/immunology , Rabbits , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Mice , Female , Antigens, Fungal/immunology , Antigens, Fungal/administration & dosage , Adjuvants, Immunologic/administration & dosage , Fungal Proteins/immunology , Fungal Proteins/administration & dosage , Cytokines , Vaccination/methods , Immunoglobulin G/blood , Disease Models, Animal , Interleukin-17/immunology , Interferon-gamma/immunology , Vaccine Efficacy , Survival Analysis , Alum Compounds
2.
Vaccine ; 42(23): 126217, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39163713

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen and the major cause of healthcare-associated infections, which are increasingly complicated by the prevalence of highly invasive and hyper-virulent K. pneumoniae strains, necessitating the development of alternative strategies for combatting infections caused by this bacterium. In this study, we successfully constructed a fusion antigen called KP-Ag1, comprising three antigens (GlnH, FimA, and KPN_00466) that were previously identified through reverse vaccinology. Immunization with KP-Ag1 formulated with Al(OH)3 adjuvant elicited robust humoral and cellular immune response in mice, and conferred protective immunity in a murine model of K. pneumoniae lung infection. Further analysis of serum IgG subtypes from mice immunized with KP-Ag1 revealed a predominant IgG1 response, indicating that KP-Ag1 predominantly induces a Th2-biased immune response. Additionally, opsonophagocytic killing assay suggested that humoral immune responses play a pivotal role in mediating protection conferred by KP-Ag1. Moreover, KP-Ag1 was found to promote the activation and maturation of BMDCs in vitro, which is essential for subsequent efficient antigen presentation. More importantly, vaccination with KP-Ag1 demonstrated cross-protective efficacy against clinical isolates of K. pneumoniae varying in serotypes, antibiotic resistance, and virulence profiles. Therefore, KP-Ag1 holds promise as a candidate for K. pneumoniae vaccine development.


Subject(s)
Adjuvants, Immunologic , Antibodies, Bacterial , Bacterial Vaccines , Disease Models, Animal , Immunoglobulin G , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/immunology , Klebsiella Infections/prevention & control , Klebsiella Infections/immunology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adjuvants, Immunologic/administration & dosage , Female , Immunity, Humoral , Vaccination/methods , Antigens, Bacterial/immunology , Pneumonia, Bacterial/prevention & control , Pneumonia, Bacterial/immunology , Mice, Inbred BALB C , Immunity, Cellular , Cross Protection/immunology
3.
Research (Wash D C) ; 7: 0409, 2024.
Article in English | MEDLINE | ID: mdl-39022746

ABSTRACT

Helicobacter pylori infection is characterized as progressive processes of bacterial persistence and chronic gastritis with features of infiltration of mononuclear cells more than granulocytes in gastric mucosa. Angiopoietin-like 4 (ANGPTL4) is considered a double-edged sword in inflammation-associated diseases, but its function and clinical relevance in H. pylori-associated pathology are unknown. Here, we demonstrate both pro-colonization and pro-inflammation roles of ANGPTL4 in H. pylori infection. Increased ANGPTL4 in the infected gastric mucosa was produced from gastric epithelial cells (GECs) synergistically induced by H. pylori and IL-17A in a cagA-dependent manner. Human gastric ANGPTL4 correlated with H. pylori colonization and the severity of gastritis, and mouse ANGPTL4 from non-bone marrow-derived cells promoted bacteria colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Il17a -/-, Angptl4 -/-, and Il17a -/- Angptl4 -/- mice. Mechanistically, ANGPTL4 bound to integrin αV (ITGAV) on GECs to suppress CXCL1 production by inhibiting ERK, leading to decreased gastric influx of neutrophils, thereby promoting H. pylori colonization; ANGPTL4 also bound to ITGAV on monocytes to promote CCL5 production by activating PI3K-AKT-NF-κB, resulting in increased gastric influx of regulatory CD4+ T cells (Tregs) via CCL5-CCR4-dependent migration. In turn, ANGPTL4 induced Treg proliferation by binding to ITGAV to activate PI3K-AKT-NF-κB, promoting H. pylori-associated gastritis. Overall, we propose a model in which ANGPTL4 collectively ensures H. pylori persistence and promotes gastritis. Efforts to inhibit ANGPTL4-associated pathway may prove valuable strategies in treating H. pylori infection.

4.
Nat Commun ; 15(1): 5879, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997253

ABSTRACT

The development of new antibiotics continues to pose challenges, particularly considering the growing threat of multidrug-resistant Staphylococcus aureus. Structurally diverse natural products provide a promising source of antibiotics. Herein, we outline a concise approach for the collective asymmetric total synthesis of polycyclic xanthene myrtucommulone D and five related congeners. The strategy involves rapid assembly of the challenging benzopyrano[2,3-a]xanthene core, highly diastereoselective establishment of three contiguous stereocenters through a retro-hemiketalization/double Michael cascade reaction, and a Mitsunobu-mediated chiral resolution approach with high optical purity and broad substrate scope. Quantum mechanical calculations provide insight into stereoselective construction mechanism of the three contiguous stereocenters. Additionally, this work leads to the discovery of an antibacterial agent against both drug-sensitive and drug-resistant S. aureus. This compound operates through a unique mechanism that promotes bacterial autolysis by activating the two-component sensory histidine kinase WalK. Our research holds potential for future antibacterial drug development.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Xanthenes , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Xanthenes/chemical synthesis , Xanthenes/pharmacology , Xanthenes/chemistry , Microbial Sensitivity Tests , Stereoisomerism , Polycyclic Compounds/chemical synthesis , Polycyclic Compounds/pharmacology , Polycyclic Compounds/chemistry , Drug Discovery , Molecular Structure
5.
Hum Vaccin Immunother ; 20(1): 2360338, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38857905

ABSTRACT

Staphylococcal Enterotoxin B (SEB), produced by Staphylococcus aureus (S. aureus), is a powerful superantigen that induces severe immune disruption and toxic shock syndrome (TSS) upon binding to MHC-II and TCR. Despite its significant impact on the pathogenesis of S. aureus, there are currently no specific therapeutic interventions available to counteract the mechanism of action exerted by this toxin. In this study, we have identified a human monoclonal antibody, named Hm0487, that specifically targets SEB by single-cell sequencing using PBMCs isolated from volunteers enrolled in a phase I clinical trial of the five-antigen S. aureus vaccine. X-ray crystallography studies revealed that Hm0487 exhibits high affinity for a linear B cell epitope in SEB (SEB138-147), which is located distantly from the site involved in the formation of the MHC-SEB-TCR ternary complex. Furthermore, in vitro studies demonstrated that Hm0487 significantly impacts the interaction of SEB with both receptors and the binding to immune cells, probably due to an allosteric effect on SEB rather than competing with receptors for binding sites. Moreover, both in vitro and in vivo studies validated that Hm0487 displayed efficient neutralizing efficacy in models of lethal shock and sepsis induced by either SEB or bacterial challenge. Our findings unveil an alternative mechanism for neutralizing the pathogenesis of SEB by Hm0487, and this antibody provides a novel strategy for mitigating both SEB-induced toxicity and S. aureus infection.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Enterotoxins , Enterotoxins/immunology , Enterotoxins/antagonists & inhibitors , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Animals , Crystallography, X-Ray , Staphylococcus aureus/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Epitopes, B-Lymphocyte/immunology , Mice , Shock, Septic/immunology , Shock, Septic/prevention & control , Female , Leukocytes, Mononuclear/immunology , Staphylococcal Vaccines/immunology , Antibodies, Bacterial/immunology , Superantigens/immunology
6.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834545

ABSTRACT

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Subject(s)
Bacterial Proteins , Burkholderia pseudomallei , Macrophages , Mitochondria , Mitophagy , Burkholderia pseudomallei/metabolism , Burkholderia pseudomallei/pathogenicity , Burkholderia pseudomallei/physiology , Burkholderia pseudomallei/genetics , Animals , Mice , Mitochondria/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Macrophages/microbiology , Macrophages/metabolism , Ubiquitination , Melioidosis/microbiology , Melioidosis/metabolism , Host-Pathogen Interactions , Reactive Oxygen Species/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , HEK293 Cells , RAW 264.7 Cells
7.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771879

ABSTRACT

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
8.
Biomed Pharmacother ; 174: 116611, 2024 May.
Article in English | MEDLINE | ID: mdl-38643540

ABSTRACT

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Subject(s)
Bacterial Vaccines , Epitopes , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/immunology , Klebsiella Infections/prevention & control , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Mice , Female , Epitopes/immunology , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Lung/microbiology , Lung/immunology , Lung/pathology , Immunity, Cellular/drug effects , Staphylococcus aureus/immunology , Adjuvants, Immunologic/pharmacology , Immunity, Humoral/drug effects
9.
Microbiol Spectr ; 12(6): e0011124, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651886

ABSTRACT

Drug efflux systems have recently been recognized as a significant mechanism responsible for multidrug resistance in bacteria. In this study, we described the identification and characterization of a new chromosomally encoded efflux pump (SA00565) in Staphylococcus aureus. SA00565, which belongs to the drug/metabolite transporter (DMT) superfamily, was predicted to be a 10-transmembrane segment transporter. To evaluate the role of sa00565 in resistance, we generated sa00565 gene deletion mutant (Δsa00565) and assessed its susceptibility to 35 different antibiotic treatments. Our results demonstrated that the Δsa00565 mutant exhibited reduced resistance to tetracycline and doxycycline, with 64-fold and 12-fold decreased MICs, respectively. The mechanism of SA00565-mediated tetracycline resistance was demonstrated that SA00565 possesses the capability to efficiently extrud intracellular tetracycline into the environment. The efflux activity of SA00565 was further validated using EtBr accumulation and efflux assays. In summary, our study uncovered a previously unknown function of a DMT family transporter, which serves as a tetracycline efflux pump, thereby contributing to tetracycline resistance in S. aureus.IMPORTANCEIn this study, we addressed the significance of drug efflux systems in multidrug resistance of Staphylococcus aureus, focusing on the unexplored efflux pump SA00565 in the drug/metabolite transporter (DMT) superfamily. Through phylogenetic analysis, gene knockout, and overexpression experiments, we identified the role of SA00565 in antibiotic resistance. The Δsa00565 mutant showed increased susceptibility to tetracycline and doxycycline in disk diffusion assays, with significantly lower MICs compared to the WT. Remarkably, intracellular tetracycline concentration in the mutant was two- to threefold higher, indicating SA00565 actively eliminates intracellular tetracycline. Our findings emphasize the pivotal contribution of SA00565 to tetracycline antibiotic resistance in S. aureus, shedding light on its functional attributes within the DMT superfamily and providing valuable insights for combating multidrug resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Staphylococcus aureus , Tetracycline , Tetracycline/pharmacology , Tetracycline/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Tetracycline Resistance/genetics , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Doxycycline/pharmacology
10.
Clin Transl Immunology ; 13(3): e1499, 2024.
Article in English | MEDLINE | ID: mdl-38501063

ABSTRACT

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

11.
Int J Biol Macromol ; 264(Pt 2): 130660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460634

ABSTRACT

The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Vaccination , DNA , Antibodies, Viral , Antibodies, Neutralizing
12.
Pharmacol Res ; 202: 107122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428703

ABSTRACT

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Subject(s)
CD8-Positive T-Lymphocytes , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
ACS Infect Dis ; 10(3): 961-970, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38317424

ABSTRACT

Quorum sensing (QS) is considered an appealing target for interference with bacterial infections. ß-Adrenergic blockers are promising anti-QS agents but do not have antibacterial activity. We assessed the potential ability of adrenergic receptor inhibitors to enhance the antibacterial activity of polymyxin B (PB) against Klebsiella pneumoniae and determined that dronedarone has the most potent activity both in vitro and in vivo. We found that dronedarone increases the thermal stability of LuxS, decreases the production of AI-2, and affects the biofilm formation of K. pneumoniae. We also identified the direct binding of dronedarone to LuxS. However, the mechanism by which dronedarone enhances the antibacterial activity of PB has not been elucidated and is worthy of further exploration. Our study provides a basis for the future development of drug combination regimens.


Subject(s)
Polymyxin B , Quorum Sensing , Polymyxin B/pharmacology , Biofilms , Dronedarone , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology
14.
BMC Microbiol ; 24(1): 13, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177984

ABSTRACT

BACKGROUND: The utilization of fructose as a carbon source and energy provider plays a crucial role in bacterial metabolism. Additionally, fructose metabolism directly impacts the pathogenicity and virulence of certain pathogenic microorganisms. RESULTS: In this study, we report the discovery of a fructose phosphotransferase system (PTS) in S. aureus. This system comprises three genes, namely fruR, fruK, and fruT, which are co-located in an operon that is indispensable for fructose utilization in S. aureus. Our findings confirm that these three genes are transcribed from a single promoter located upstream of the fruRKT operon. The fruR gene encodes a DeoR-type transcriptional regulator, designated as FruR, which represses the expression of the fruRKT operon by direct binding to its promoter region. Significantly, our experimental data demonstrate that the fruRKT operon can be induced by fructose, suggesting a potential regulatory mechanism involving intracellular fructose-1-phosphate as a direct inducer. Furthermore, we conducted RNA-seq analysis to investigate the specificity of FruR regulation in S. aureus, revealing that the fruRKT operon is predominantly regulated by FruR. CONCLUSIONS: In summary, this study has uncovered a fructose phosphotransferase system (PTS) in S. aureus, highlighting the essential role of the fruR, fruK, and fruT genes in fructose utilization. We confirmed their co-location within an operon and established FruR as a key regulator by binding to the operon's promoter. Importantly, we demonstrated that fructose can induce this operon, possibly through intracellular fructose-1-phosphate. Our identification of this PTS system represents the initial characterization of a fructose metabolism system in S. aureus.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Base Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Operon , Phosphotransferases/genetics , Fructose/metabolism , Gene Expression Regulation, Bacterial
15.
J Adv Res ; 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38048846

ABSTRACT

INTRODUCTION: Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES: Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS: The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS: In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS: The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.

16.
Clin Immunol ; 257: 109843, 2023 12.
Article in English | MEDLINE | ID: mdl-37981106

ABSTRACT

Methicillin-resistant Staphylococcus aureus, poses a significant threat through infections in both community and hospital settings. To address this challenge, we conducted a phase I clinical trial study involving a recombinant Staphylococcus aureus vaccine. Utilizing peripheral blood lymphocytes from 64 subjects, we isolated antigen-specific memory B cells for subsequent single-cell sequencing. Among the 676 identified antigen-binding IgG1+ clones, we selected the top 10 antibody strains for construction within expression vectors. Successful expression and purification of these monoclonal antibodies led to the discovery of a highly expressed human antibody, designated as IgG-6. This antibody specifically targets the pentameric form of the Staphylococcus aureus protein A (SpA5). In vivo assessments revealed that IgG-6 provided prophylactic protection against MRSA252 infection. This study underscores the potential of human antibodies as an innovative strategy against Staphylococcus aureus infections, offering a promising avenue for further research and clinical development.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus aureus , Humans , Antibodies, Bacterial , Antibodies, Monoclonal , Immunoglobulin G , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
17.
Biomed Pharmacother ; 169: 115856, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37949698

ABSTRACT

Given the important role of polymyxin B (PB) in the treatment of drug-resistant Gram-negative bacterial infections, the emergence of PB resistance poses a serious threat to public health. Adjuvant development is a supplementary strategy that can compensate for the lack of novel antibiotics by protecting PB. In this study, we found a small molecule named Lyb24 that showed weak antibacterial activity (minimum inhibitory concentration ≥ 10 µg/ml) but potentiated and revitalized the efficacy of PB against Gram-negative pathogens, including mcr-1- and mgrB-deletion-mediated PB-resistant strains. Our results showed that Lyb24 inhibits the translational levels of genes associated with the modification of lipid A. In addition, Lyb24 increases the permeability, disrupts the integrity and induces the depolarization of the membrane. We further found that both Lyb24 and PB could directly bind to AzoR and inhibit its activity. Structural analysis showed that Lyb24 binds to the isoalloxazine ring of flavin mononucleotide (FMN) through pi-pi stacking and loop η4 of AzoR. A pneumonia model was used to confirm that the activity against clinical PB-resistant Klebsiella pneumoniae was enhanced due to Lyb24 on PB. In conclusion, we provide a potential therapeutic regimen by combining Lyb24 and PB to treat Gram-negative-resistant bacterial infections. Our findings not only explain the synergistic effect of Lyb24, but also expand our knowledge on the mechanism of action of PB.


Subject(s)
Amlodipine Besylate, Olmesartan Medoxomil Drug Combination , Polymyxin B , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests
18.
Int J Biol Macromol ; 253(Pt 8): 127634, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37884248

ABSTRACT

Due to the increasing antibiotic resistance of Pseudomonas aeruginosa (PA), an effective vaccine is urgently needed. However, no PA vaccine has been approved to date, and new protective antigens are needed to improve their efficacy. In this study, Luminex beads were used to identify new candidate antigens, after which their crystal structure was determined, and their potential contribution to bacterial pathogenesis was assessed in vitro and in vivo. Notably, a significant antibody response against the outer membrane protein LptF (lipotoxin F) was detected in sera from 409 volunteers. Moreover, vaccination with recombinant LptF conferred effective protection in an acute PA pneumonia model. The crystal structure showed that LptF comprises a 3-stranded ß-sheet (ß1-ß3) and three α-helices (α1-α3) that are organized in an α/ß/α/ß/α/ß pattern, which is structurally homologous to OmpA and related outer membrane proteins. In addition, LptF binds to peptidoglycan in an atypical manner, contributing to the pathogenesis and survival of PA under stress. Our data indicate that LptF is an important virulence factor and thus a promising candidate antigen for PA vaccines.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Humans , Vaccination , Pseudomonas Vaccines , Antibodies, Bacterial
19.
Mol Immunol ; 163: 235-242, 2023 11.
Article in English | MEDLINE | ID: mdl-37866168

ABSTRACT

Increasing prevalence of multidrug- and pan-drug-resistant Pseudomonas aeruginosa (PA) strains has created an urgent need for an effective vaccine. Flagellin is an essential vaccine target because of its contribution to bacterial motility and other pathogenic processes. However, flagellin-based vaccines have not been successful thus far, probably due to a lack of efficient adjuvants or delivery systems. In this study, we genetically fused an A-type flagellin (FliC) to the self-assembled nanocarrier ferritin to construct the nanoparticle vaccine, reFliC-ferritin (reFliC-FN). reFliC-FN formed homogenous nanoparticles and induced a quick T helper 1 (Th1)-predominant immune response, which was quite different from that induced by recombinant FliC alone. In addition, reFliC-FN provided enhanced protection against PA strains carrying the A-type and heterogeneous B-type flagellins. Preliminary safety assays revealed the good biocompatibility and biosafety of reFliC-FN. Therefore, our data highlight the potential of ferritin as an ideal delivery system and suggest reFliC-FN as a promising PA vaccine candidate.


Subject(s)
Nanoparticles , Pseudomonas Infections , Vaccines , Animals , Mice , Flagellin , Pseudomonas aeruginosa , Lung , Mice, Inbred BALB C
20.
Clin Immunol ; 255: 109747, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634854

ABSTRACT

Staphylococcus aureus (S. aureus) contamination commonly occurs in orthopedic internal fixation operations, leading to a delayed healing of the defected bone tissue. However, antibiotic treatments are ineffective in dealing with S. aureus bone infections due to the rise in multiple antimicrobial resistances. Here, we reported the protective effects of a recombinant five-antigen S. aureus vaccine (rFSAV) in an S. aureus infected bone defect model. In this study, we found the number of M2 macrophages markedly increased in the defect site and played a critical role in the healing of defected bone mediated by rFSAV. Mechanistically, rFSAV mediated increased level of IL-13 in bone defect site predominant M2 macrophage polarization. In summary, our study reveals a key role of M2 macrophage polarization in the bone regeneration process in S. aureus infection induced bone defect, which provide a promising application of rFSAV for the treatment of bone infection for orthopedic applications.

SELECTION OF CITATIONS
SEARCH DETAIL