Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 42(5): 3261-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335280

ABSTRACT

Elongation factor P (EF-P) is a conserved ribosome-binding protein that structurally mimics tRNA to enable the synthesis of peptides containing motifs that otherwise would induce translational stalling, including polyproline. In many bacteria, EF-P function requires post-translational modification with (R)-ß-lysine by the lysyl-tRNA synthetase paralog PoxA. To investigate how recognition of EF-P by PoxA evolved from tRNA recognition by aminoacyl-tRNA synthetases, we compared the roles of EF-P/PoxA polar contacts with analogous interactions in a closely related tRNA/synthetase complex. PoxA was found to recognize EF-P solely via identity elements in the acceptor loop, the domain of the protein that interacts with the ribosome peptidyl transferase center and mimics the 3'-acceptor stem of tRNA. Although the EF-P acceptor loop residues required for PoxA recognition are highly conserved, their conservation was found to be independent of the phylogenetic distribution of PoxA. This suggests EF-P first evolved tRNA mimicry to optimize interactions with the ribosome, with PoxA-catalyzed aminoacylation evolving later as a secondary mechanism to further improve ribosome binding and translation control.


Subject(s)
Evolution, Molecular , Lysine-tRNA Ligase/chemistry , Molecular Mimicry , Peptide Elongation Factors/chemistry , Protein Biosynthesis , Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/metabolism , Binding Sites , Catalytic Domain , Models, Molecular , Peptide Elongation Factors/metabolism , Protein Binding , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosomes/metabolism , Transfer RNA Aminoacylation
2.
mBio ; 4(2): e00180-13, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23611909

ABSTRACT

UNLABELLED: Elongation factor P (EF-P) is a universally conserved bacterial translation factor homologous to eukaryotic/archaeal initiation factor 5A. In Salmonella, deletion of the efp gene results in pleiotropic phenotypes, including increased susceptibility to numerous cellular stressors. Only a limited number of proteins are affected by the loss of EF-P, and it has recently been determined that EF-P plays a critical role in rescuing ribosomes stalled at PPP and PPG peptide sequences. Here we present an unbiased in vivo investigation of the specific targets of EF-P by employing stable isotope labeling of amino acids in cell culture (SILAC) to compare the proteomes of wild-type and efp mutant Salmonella. We found that metabolic and motility genes are prominent among the subset of proteins with decreased production in the Δefp mutant. Furthermore, particular tripeptide motifs are statistically overrepresented among the proteins downregulated in efp mutant strains. These include both PPP and PPG but also additional motifs, such as APP and YIRYIR, which were confirmed to induce EF-P dependence by a translational fusion assay. Notably, we found that many proteins containing polyproline motifs are not misregulated in an EF-P-deficient background, suggesting that the factors that govern EF-P-mediated regulation are complex. Finally, we analyzed the specific region of the PoxB protein that is modulated by EF-P and found that mutation of any residue within a specific GSCGPG sequence eliminates the requirement for EF-P. This work expands the known repertoire of EF-P target motifs and implicates factors beyond polyproline motifs that are required for EF-P-mediated regulation. IMPORTANCE: Bacterial cells regulate gene expression at several points during and after transcription. During protein synthesis, for example, factors can interact with the ribosome to influence the production of specific proteins. Bacterial elongation factor P (EF-P) is a protein that facilitates the synthesis of proteins that contain polyproline motifs by preventing the ribosome from stalling. Bacterial cells that lack EF-P are viable but are sensitive to a large number of stress conditions. In this study, a global analysis of protein synthesis revealed that EF-P regulates many more proteins in the cell than predicted based solely on the prevalence of polyproline motifs. Several new EF-P-regulated motifs were uncovered, thereby providing a more complete picture of how this critical factor influences the cell's response to stress at the level of protein synthesis.


Subject(s)
Amino Acid Motifs , Escherichia coli/metabolism , Peptide Elongation Factors/metabolism , Protein Biosynthesis , Salmonella enterica/metabolism , Bacterial Proteins/analysis , Escherichia coli/genetics , Gene Deletion , Isotope Labeling , Peptide Elongation Factors/genetics , Proteome/analysis , Salmonella enterica/genetics
3.
J Biol Chem ; 288(6): 4416-23, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23277358

ABSTRACT

Post-translational modification of bacterial elongation factor P (EF-P) with (R)-ß-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(ß)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the ß-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational ß-lysylation but not hydroxylation.


Subject(s)
Bacterial Proteins/metabolism , Lysine/metabolism , Peptide Chain Elongation, Translational/physiology , Peptide Elongation Factors/metabolism , Protein Processing, Post-Translational/physiology , Salmonella enterica/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Hydroxylation/physiology , Lysine/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Peptide Elongation Factors/genetics , Salmonella enterica/genetics
4.
J Bacteriol ; 194(2): 413-25, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22081389

ABSTRACT

Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.


Subject(s)
Cell Membrane/physiology , Gene Expression Regulation, Bacterial/physiology , Peptide Elongation Factors/metabolism , Salmonella typhimurium/cytology , Salmonella typhimurium/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Detergents , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation , Osmolar Concentration , Peptide Elongation Factors/genetics , Permeability , Plasmids , Salmonella typhimurium/genetics , Up-Regulation
5.
Nat Chem Biol ; 7(10): 667-9, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21841797

ABSTRACT

The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts containing non-α-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.


Subject(s)
Lysine-tRNA Ligase/metabolism , Lysine/analogs & derivatives , Peptide Elongation Factors/metabolism , Lysine/chemistry , Lysine/metabolism , Lysine-tRNA Ligase/chemistry , Models, Molecular , Molecular Structure , Peptide Elongation Factors/chemistry , Stereoisomerism
6.
Virulence ; 2(2): 147-51, 2011.
Article in English | MEDLINE | ID: mdl-21317554

ABSTRACT

Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved lysine residue in the translation factor elongation factor P (EF-P). Strains in which EF-P is unmodified due to the absence of PoxA or YjeK are attenuated for virulence and display highly pleiotropic phenotypes, including hypersusceptibility to a wide range of unrelated antimicrobial compounds. Work from our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar changes in the translation machinery during stress adaptation, indicating that the role of these factors in physiology may be broadly conserved.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Peptide Elongation Factors/metabolism , Protein Processing, Post-Translational , Salmonella/metabolism , Salmonella/pathogenicity , Virulence Factors/metabolism , Models, Chemical , Models, Molecular , Virulence
7.
Mol Cell ; 39(2): 209-21, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20670890

ABSTRACT

We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Microbial , Peptide Elongation Factors/metabolism , Protein Processing, Post-Translational , Salmonella enterica , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial/genetics , Genomic Islands/genetics , Lysine/analogs & derivatives , Lysine/genetics , Lysine/metabolism , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Mice , Peptide Elongation Factors/genetics , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...