Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(42): 15796-15808, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37816072

ABSTRACT

Tropomyosin (TM) is a major crustacean allergen, and the present studies have tried to reduce its allergenicity by processing technologies. However, most research stopped on the allergenicity and structure of allergens, while information about epitopes was less. In this study, we first investigated the effects of cold plasma (CP) combined with glycation (CP-G) treatment on the processing and trypsin cleavage sites of TM from shrimp (Penaeus chinensis). The results showed a significant reduction in the IgE-binding capacity of TM after CP-G treatment, with a maximum reduction of 30%. This reduction was associated with the combined effects: modification induced by CP destroyed the core helical structure (D137 and E218) and occupied the potential glycation sites, leading to sequent glycation on conserved areas of TM, especially the epitope L130-Q147. Additionally, CP-G treatment decreased the digestion stability of TM by increasing the number of cleavage sites of trypsin and improving the efficiency of some sites, including K5, K6, K30, and R133, resulting in a lower IgE-binding capacity of digestion products, which fell to a maximum of 20%. Thus, CP-G is a valuable and reliable processing technology for the desensitization of aquatic products.


Subject(s)
Penaeidae , Plasma Gases , Animals , Tropomyosin/chemistry , Maillard Reaction , Trypsin , Allergens/chemistry , Penaeidae/chemistry , Immunoglobulin E/chemistry , Epitopes/chemistry , Digestion
2.
Crit Rev Food Sci Nutr ; 63(13): 1806-1821, 2023.
Article in English | MEDLINE | ID: mdl-36688292

ABSTRACT

The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and ß-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.


Subject(s)
Antioxidants , Hydrogen Peroxide , Reactive Oxygen Species , Carbon/metabolism , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...