Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732059

ABSTRACT

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Subject(s)
Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
2.
Plant Physiol ; 192(3): 1913-1927, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36843134

ABSTRACT

Chlorophyll degradation and anthocyanin biosynthesis, which often occur almost synchronously during fruit ripening, are crucial for vibrant coloration of fruits. However, the interlink point between their regulatory pathways remains largely unknown. Here, 2 litchi (Litchi chinensis Sonn.) cultivars with distinctively different coloration patterns during ripening, i.e. slow-reddening/stay-green "Feizixiao" (FZX) vs rapid-reddening/degreening "Nuomici" (NMC), were selected as the materials to study the key factors determining coloration. Litchi chinensis STAY-GREEN (LcSGR) was confirmed as the critical gene in pericarp chlorophyll loss and chloroplast breakdown during fruit ripening, as LcSGR directly interacted with pheophorbide a oxygenase (PAO), a key enzyme in chlorophyll degradation via the PAO pathway. Litchi chinensis no apical meristem (NAM), Arabidopsis transcription activation factor 1/2, and cup-shaped cotyledon 2 (LcNAC002) was identified as a positive regulator in the coloration of litchi pericarp. The expression of LcNAC002 was significantly higher in NMC than in FZX. Virus-induced gene silencing of LcNAC002 significantly decreased the expression of LcSGR as well as L. chinensis MYELOBLASTOSIS1 (LcMYB1), and inhibited chlorophyll loss and anthocyanin accumulation. A dual-luciferase reporter assay revealed that LcNAC002 significantly activates the expression of both LcSGR and LcMYB1. Furthermore, yeast-one-hybrid and electrophoretic mobility shift assay results showed that LcNAC002 directly binds to the promoters of LcSGR and LcMYB1. These findings suggest that LcNAC002 is an important ripening-related transcription factor that interlinks chlorophyll degradation and anthocyanin biosynthesis by coactivating the expression of both LcSGR and LcMYB1.


Subject(s)
Anthocyanins , Litchi , Anthocyanins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Litchi/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Chlorophyll/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
PLoS One ; 15(6): e0233631, 2020.
Article in English | MEDLINE | ID: mdl-32589636

ABSTRACT

Loquat (Eriobotrya japonica Lindl.) is divided into yellow- and white-fleshed based on the difference in fruit color, and the variations in carotenoids accumulation are considered as the main reasons for this difference. Using RNA-seq technology, a transcriptome analysis was carried out on the flesh and peel of 'Baiyu' fruit during four different fruit development stages. A total of 172.53 Gb clean reads with an average of 6.33 Gb reads were detected for each library, and the percentage of Q30 was higher than 90.84%. We identified 16 carotenogenic and 13 plastid-lipid-associated protein (PAP) genes through RNA-seq. Of these, five carotenogenic and four PAP related genes exhibited remarkable differences in the expression patterns. Carotenoids biosynthetic genes, including DXS, PSY1 and VDE displayed higher expression levels in peel than that in the flesh. However, carotenoids decomposition gene, such as NCDE1, exhibited higher expression in flesh than that in the peel. Notably, all differentially expressed PAP genes showed higher expression levels in peel than flesh. We inferred that the differential accumulation of carotenoids in flesh and peel of 'Baiyu' is caused by the up- or down-regulation of the carotenogenic and PAP related genes. The functional analysis of these important genes will provide valuable information about underlying molecular mechanism of carotenoids accumulation in loquat.


Subject(s)
Carotenoids/metabolism , Eriobotrya/genetics , Fruit/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Biosynthetic Pathways/genetics , Down-Regulation , Eriobotrya/metabolism , Fruit/growth & development , Genes, Plant , RNA-Seq , Up-Regulation
4.
Food Chem ; 323: 126822, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32334307

ABSTRACT

Loquats can be divided into white- and yellow-fleshed cultivars. Generally, white-fleshed cultivars taste better than yellow-fleshed cultivars. Currently, metabolic causes of differences in taste are unknown, due to the lack of a large-scale and comprehensive investigation of metabolites in loquat fruit. Here, we performed a LC-MS/MS-based widely targeted metabolome analysis on two cultivars, 'Baiyu' (white-fleshed) and 'ZaozhongNo. 6' (yellow-fleshed). A total of 536 metabolites were identified, 193 of which (including 7 carbohydrates, 12 organic acids and 8 amino acids) were different between the cultivars. Pathway enrichment analysis also identified significant differences in phenolic pathways between the cultivars. Our results suggest that taste differences between the cultivars can be explained by variations in composition and abundance of carbohydrates, organic acids, amino acids, and phenolics. This study provides new insights into the underlying metabolic causes of taste variation in loquat.

SELECTION OF CITATIONS
SEARCH DETAIL
...