Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1364476, 2024.
Article in English | MEDLINE | ID: mdl-38818043

ABSTRACT

Introduction: Primary ciliary dyskinesia (PCD) is a rare heterogeneous disease caused by abnormalities in motile cilia. In this case report, we first analyzed the clinical and genetic data of a proband who was suspected of having PCD on the basis of her clinical and radiological findings. Methods: Whole-exome sequencing was performed, and a variant in the RSPH4A gene was identified in the proband. Sanger sequencing was used for validation of RSPH4A variants in the proband, her sister, her daughter and her parents. Finally, the phenotypic features of the patient were analyzed, and the current literature was reviewed to better understand the gene variants in PCD related to hearing loss and the clinical manifestations of the RSPH4A variant in PCD. Results: The chief clinical symptoms of this proband included gradual mixed hearing loss, otitis media, anosmia, sinusitis, recurrent cough and infertility. Her DNA sequencing revealed a novel homozygous T to C transition at position 1321 within exon 3 of RSPH4A according to genetic testing results. This variant had never been reported before. The homozygous variant resulted in an amino acid substitution of tryptophan by arginine at position 441 (p.Trp441Arg). The same variant was also found in the proband's sister, and a heterozygous pathogenic variant was identified among immediate family members, including the proband's daughter and parents. Discussion: A literature review showed that 16 pathogenic variants in RSPH4A have been reported. Hearing loss had only been observed in patients with the RSPH4A (c.921+3_6delAAGT) splice site mutation, and the specific type of hearing loss was not described.

2.
Aging Cell ; 23(4): e14091, 2024 04.
Article in English | MEDLINE | ID: mdl-38267829

ABSTRACT

The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.


Subject(s)
Presbycusis , Sirtuin 3 , Animals , Mice , Acetylation , Mice, Inbred C57BL , Mitochondrial Dynamics/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism
3.
Hear Res ; 434: 108784, 2023 07.
Article in English | MEDLINE | ID: mdl-37172415

ABSTRACT

The c-Jun N-terminal kinase (JNK) pathway is a vital component of the mitogen-activated protein kinase cascade, which regulates cell death and survival. The present study aimed to explore the Spatio-temporal changes in all JNK isoforms in the cochleae of C57/BL6J mice with age-related hearing loss. Changes in the three isoforms of JNKs in the cochleae of an animal model with presbycusis and the senescent HEI-OC1 cell line were tested by immunohistochemistry staining and western blotting. Our results demonstrated that all three JNK isoforms are distributed in the cochleae, and the expression patterns of JNK1, JNK2, and JNK3 differed in hair cells, spiral ganglion neurons, and stria vascularis, with great significance in the cochleae of adult C57BL/6J mice. The levels of JNK1, JNK2, and JNK3 showed various spatio-temporal changes in the aging mice. In a senescent hair cell model, changes in JNK1, JNK2, and JNK3 expression levels were similar to those observed in the cochleae. Our study is the first to show that JNK3 is highly expressed in the hair cells of C57BL/6J mice and further increases in conjunction with age-related hearing loss, suggesting that it may play a more critical role than previously believed in hair cell loss and spiral ganglion degeneration.


Subject(s)
JNK Mitogen-Activated Protein Kinases , Presbycusis , Mice , Animals , JNK Mitogen-Activated Protein Kinases/metabolism , Presbycusis/genetics , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Protein Isoforms
4.
Front Neurosci ; 16: 998507, 2022.
Article in English | MEDLINE | ID: mdl-36278017

ABSTRACT

Mitochondria are the powerhouse of the cells. Under physiological conditions, mitochondrial fission and fusion maintain a dynamic equilibrium in the cytoplasm, which is referred to as mitochondrial dynamics. As an important approach to regulating mitochondrial function and quantity, the role of mitochondrial dynamics has been demonstrated in the pathogenesis of various disease models, including brain damage, neurodegeneration, and stress. As the vital organ of the peripheral auditory system, the cochlea consumes a significant amount of energy, and the maintenance of mitochondrial homeostasis is essential for the cochlear auditory capacity. OPA1 functions as both a necessary gene regulating mitochondrial fusion and a pathogenic gene responsible for auditory neuropathy, suggesting that an imbalance in mitochondrial dynamics may play a critical role in hearing loss, but relevant studies are few. In this review, we summarize recent evidence regarding the role of mitochondrial dynamics in the pathogenesis of noise-induced hearing loss (NIHL), drug-induced hearing loss, hereditary hearing loss, and age-related hearing loss. The impacts of impaired mitochondrial dynamics on hearing loss are discussed, and the potential of mitochondrial dynamics for the prevention and treatment of hearing loss is considered.

5.
Front Aging Neurosci ; 14: 930105, 2022.
Article in English | MEDLINE | ID: mdl-35966796

ABSTRACT

With the increase in life expectancy in the global population, aging societies have emerged in many countries, including China. As a common sensory defect in the elderly population, the prevalence of age-related hearing loss and its influence on society are increasing yearly. Metabolic syndrome is currently one of the main health problems in the world. Many studies have demonstrated that metabolic syndrome and its components are correlated with a variety of age-related diseases of the peripheral sensory system, including age-related hearing loss. Both age-related hearing loss and metabolic syndrome are high-prevalence chronic diseases, and many people suffer from both at the same time. In recent years, more and more studies have found that mitochondrial dysfunction occurs in both metabolic syndrome and age-related hearing loss. Therefore, to better understand the impact of metabolic syndrome on age-related hearing loss from the perspective of mitochondrial dysfunction, we reviewed the literature related to the relationship between age-related hearing loss and metabolic syndrome and their components to discern the possible role of mitochondria in both conditions.

6.
Article in English | MEDLINE | ID: mdl-35620404

ABSTRACT

Background: Fructus mume pills (FMPs) have been clinically proven to be effective for treating ulcerative colitis (UC). However, the therapeutic and protective mechanisms have not been fully studied. Aim: We aimed to explore the mechanism of FMPs in an acetic acid (AA)-induced ulcerative colitis rat model. Methods: The targets, GO terms, and KEGG pathways for the FMPs and UC were screened and constructed using network pharmacology. A possible mechanism was verified in a 4% AA-induced colitis rat model. Colitis activity and state were evaluated using the disease activity index, and colon ulceration and intestinal mucosal damage were determined by histopathological observation through HE, AB-PAS, and Masson pathological staining. The concentrations of TNF-α, IL-6, IL-8, IL-10, MPO, MMP9, CXCR1, eNOS, and VEGF were measured to evaluate vascular permeability effects. Results: The network pharmacology results showed 108 active compounds, and 139 FMP-related targets were identified. Twenty-nine targets were identified for FMPs against UC, which included MMP9, MMP3, ESR1, PTGS1, PPARA, MPO, and NOS2. A total of 1,536 GO terms and 41 pathways were associated with FMP treatment of UC. The pharmacological evaluation showed that FMPs attenuated inflammation in AA-induced colitis by reducing the serum concentrations of TNF-α, IL-6, IL-8, and IL-10 and the colonic concentrations of MPO, MMP9, and CXCR1. FMPs ameliorated hyperpermeability by reducing the colonic VEGF and eNOS concentrations. FMPs also significantly decreased the VEGFA, VEGFR2, Src, and eNOS protein expressions in colon tissue through the VEGF-PI3K/Akt-eNOS signaling pathway. Conclusion: These results suggest that FMPs control UC inflammation by regulating inflammatory cytokine concentrations. FMPs alleviate AA-induced UC by regulating microvascular permeability through the VEGF-PI3K/Akt-eNOS signaling pathway.

7.
Small ; 18(36): e2106591, 2022 09.
Article in English | MEDLINE | ID: mdl-35106912

ABSTRACT

The least damaging and most economical method to deliver drugs or carriers into the inner ear for treatment of disease is through the middle ear. However, the retention of drug in the middle ear is an obstacle. Here, inspired by the adhesion of mussels, a methacrylate gelatin microspheres (GM) coupling polydopamine (PDA) layer (GM@PDA) with excellent adhesive ability is constructed, and Ebselen liposomes are further loaded into the GM@PDA (GM@PDA@Lipo-Ebselen). The loading capacity of GM@PDA for Ebselen liposomes is 25 ± 1 µg mg-1 microspheres. GM@PDA@Lipo-Ebselen could be injected on round windows membrane (RWM) and tightly adheres to the surface of RWM by PDA, and the microspheres are even still attached to the RWM after 360° rotation and inverted shaking. The in vivo imaging system shows that the adhesive microspheres can prolong the retention of the middle ear cavity for more than 7 days. The hearing of mice in the GM@PDA@Lipo-Ebselen group is significantly recovered, especially on day 14 after noise exposure, and the hearing of each frequency is restored to baseline level. At 32 kHz frequency, the survival of outer hair cells recovers from 48 0± 6% to 93 ± 2%. Therefore, the adhesive and injectable hydrogel microspheres provide a promising strategy for the treatment of hearing loss.


Subject(s)
Ear, Inner , Hydrogels , Adhesives , Animals , Gelatin , Liposomes , Mice , Microspheres
8.
Front Cell Dev Biol ; 9: 750271, 2021.
Article in English | MEDLINE | ID: mdl-34760891

ABSTRACT

The transcriptomic landscape of mice with primary auditory neurons degeneration (PAND) indicates key pathways in its pathogenesis, including complement cascades, immune responses, tumor necrosis factor (TNF) signaling pathway, and cytokine-cytokine receptor interaction. Toll-like receptors (TLRs) are important immune and inflammatory molecules that have been shown to disrupt the disease network of PAND. In a PAND model involving administration of kanamycin combined with furosemide to destroy cochlear hair cells, Tlr 2/4 double knockout (DKO) mice had auditory preservation advantages, which were mainly manifested at 4-16 kHz. DKO mice and wild type (WT) mice had completely damaged cochlear hair cells on the 30th day, but the density of spiral ganglion neurons (SGN) in the Rosenthal canal was significantly higher in the DKO group than in the WT group. The results of immunohistochemistry for p38 and p65 showed that the attenuation of SGN degeneration in DKO mice may not be mediated by canonical Tlr signaling pathways. The SGN transcriptome of DKO and WT mice indicated that there was an inverted gene set enrichment relationship between their different transcriptomes and the SGN degeneration transcriptome, which is consistent with the morphology results. Core module analysis suggested that DKO mice may modulate SGN degeneration by activating two clusters, and the involved molecules include EGF, STAT3, CALB2, LOX, SNAP25, CAV2, SDC4, MYL1, NCS1, PVALB, TPM4, and TMOD4.

9.
Neurobiol Dis ; 156: 105408, 2021 08.
Article in English | MEDLINE | ID: mdl-34082124

ABSTRACT

Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.


Subject(s)
Dementia/pathology , Hearing Loss, Sensorineural/pathology , Hippocampus/pathology , Neurons/pathology , Animals , Dementia/chemically induced , Dementia/metabolism , Female , Furosemide/toxicity , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation Mediators/metabolism , Kanamycin/toxicity , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , tau Proteins/metabolism
10.
Front Immunol ; 11: 619189, 2020.
Article in English | MEDLINE | ID: mdl-33679706

ABSTRACT

As a stressor widely existing in daily life, noise can cause great alterations to the immune system and result in many physical and mental disorders, including noise-induced deafness, sleep disorders, cardiovascular diseases, endocrine diseases and other problems. The immune system plays a major role in maintaining homeostasis by recognizing and removing harmful substances in the body. Many studies have shown that noise may play vital roles in the occurrence and development of some immune diseases. In humans, both innate immunity and specific immunity can be influenced by noise, and different exposure durations and intensities of noise may exert various effects on the immune system. Short-term or low-intensity noise can enhance immune function, while long-term or high-intensity noise suppresses it. Noise can lead to the occurrence of noise-induced hearing loss (NIHL) through the production of autoantibodies such as anti-Hsp70 and anti-Hsp60 and exert adverse effects related to other immune-related diseases such as some autoimmune diseases and non-Hodgkin lymphoma. The neuroendocrine system, mainly including the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system, is involved in the mechanisms of immune-related diseases induced by noise and gut microbiota dysfunction. In addition, noise exposure during pregnancy may be harmful to the immune system of the fetus. On the other hand, some studies have shown that music can improve immune function and alleviate the adverse effects caused by noise.


Subject(s)
Immune System/physiology , Noise , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...