Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Int ; 2022: 5181241, 2022.
Article in English | MEDLINE | ID: mdl-35450344

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent cells that can skew the balance of M1/M2 macrophage polarization towards the M2 phenotype via their paracrine effects, thereby promoting anatomical and functional recovery after many inflammatory diseases induced by macrophages. However, the underlying mechanism is still poorly understood. This study focused on the IL-10/STAT3 pathway and investigated whether IL-10 secreted by PBMSCs could mediate M2 polarization through the activation of this pathway. In this study, a Transwell system was used for coculturing macrophages and PBMSCs. ELISA and RT-qPCR analysis found that PBMSCs and their conditioned media (P-CM) significantly induced the expression of IL-10, while significantly inhibiting the expression of IL-1ß and TNF-α; moreover, this effect could be reversed by adding Ab9969 (an IL-10 neutralizing antibody) and Stattic (a STAT3 inhibitor). Furthermore, western blotting and immunofluorescence assays demonstrated that JAK1/STAT3 signaling was significantly upregulated in macrophages cocultured with PBMSCs or P-CM, accompanied by an increase in the M2 biomarker CD206 and a decrease in the M1 biomarker CD86. This effect could also be reversed by blocking the IL-10/STAT3 pathway with Ab9969 and Stattic. In summary, PBMSCs could mediate the polarization of M2 macrophages by activating the IL-10/STAT3 pathway.

2.
Transpl Immunol ; 72: 101592, 2022 06.
Article in English | MEDLINE | ID: mdl-35367345

ABSTRACT

BACKGROUND: Stem cell therapy has been proven as one of the promising strategies for treating spinal cord injury (SCI). However, the role of peripheral blood-derived mesenchymal stem cells (PBMSCs) in animal models of SCI has not been fully uncovered. This study aimed to investigate whether transplanted PBMSCs could inhibit neuroinflammation and then promote the functional recovery by shifting the microglia/macrophages phenotype from M1 to M2 at the site of injury after SCI. METHODS: PBMSCs harvested from peripheral blood were analyzed by morphology and phenotype. Rat models of SCI were administrated with PBMSCs 1 week after injury. Inclined plane test and Basso-Beattie-Bresnahan (BBB) scores were used for assessing the functional recovery. Enzyme-linked immunosorbent assay (ELISA), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry (FCM) were performed on days 3, 7, 14, 28 and 56 after PBMSCs transplantation. RESULTS: PBMSCs were plastic-adherent and fibroblast-like with positive expression of cluster of differentiation (CD)29, CD90 and CD44. ELISA and RT-qPCR both showed a lower expression of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α while a higher expression of anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-ß1 after PBMSCs transplantation. This was associated with increased numbers of M2 microglia/macrophages and decreased numbers of M1 microglia/macrophages. These changes taken together were associated with the functional recovery in PBMSCs groups. CONCLUSIONS: Administration of PBMSCs following SCI may provide an anti-inflammatory and reparative micro-environment for locomotive recovery by shifting microglia/macrophages phenotype from M1 towards M2.


Subject(s)
Microglia , Spinal Cord Injuries , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Interleukin-6/genetics , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Tumor Necrosis Factor-alpha/metabolism
3.
Front Immunol ; 12: 751021, 2021.
Article in English | MEDLINE | ID: mdl-34925326

ABSTRACT

Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow. Over the past few decades, studies have found that the interaction between immune cells at the damaged site results in a robust and persistent inflammatory response. Current therapy strategies focus primarily on the inhibition of subacute and chronic neuroinflammation after the acute inflammatory response was executed. Growing evidences have documented that mesenchymal stem cells (MSCs) engraftment can be served as a promising cell therapy for SCI. Numerous studies have shown that MSCs transplantation can inhibit the excessive glial scar formation as well as inflammatory response, thereby facilitating the anatomical and functional recovery. Here, we will review the effects of inflammatory response and glial scar formation in spinal cord injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation after SCI will be reviewed as well.


Subject(s)
Gliosis/pathology , Mesenchymal Stem Cell Transplantation , Nerve Regeneration/physiology , Neuroinflammatory Diseases/pathology , Spinal Cord Injuries/pathology , Animals , Humans , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...