Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985944

ABSTRACT

High density phase change memory array requires both minimized critical dimension (CD) and maximized process window for the phase change material layer. High in-wafer uniformity of the nanoscale patterning of chalcogenides material is challenging given the optical proximity effect (OPE) in the lithography process and the micro-loading effect in the etching process. In this study, we demonstrate an approach to fabricate high density phase change material arrays with half-pitch down to around 70 nm by the co-optimization of lithography and plasma etching process. The focused-energy matrix was performed to improve the pattern process window of phase change material on a 12-inch wafer. A variety of patternings from an isolated line to a dense pitch line were investigated using immersion lithography system. The collapse of the edge line is observed due to the OPE induced shrinkage in linewidth, which is deteriorative as the patterning density increases. The sub-resolution assist feature (SRAF) was placed to increase the width of the lines at both edges of each patterning by taking advantage of the optical interference between the main features and the assistant features. The survival of the line at the edges is confirmed with around a 70 nm half-pitch feature in various arrays. A uniform etching profile across the pitch line pattern of phase change material was demonstrated in which the micro-loading effect and the plasma etching damage were significantly suppressed by co-optimizing the etching parameters. The results pave the way to achieve high density device arrays with improved uniformity and reliability for mass storage applications.

2.
Nanotechnology ; 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29384495

ABSTRACT

Gold nanoparticles (Au NPs) have attracted remarkable research interests in heterogeneous catalysis due to their unique physical and chemical properties. However, only small-size Au NPs (<7 nm) exhibit promising catalytic activity. In this work, dumbbell-like Au NPs (D-Au NPs) with average size of 37 × 11 nm were prepared by a secondary seed-mediated growth method to serve as novel photocatalyst for ammonia borane (AB) hydrolysis in the solution with specific pH value. Our results demonstrate that ⅰ) the strengthened LSPR compensation effect could effectively remedy the loss of catalytic activity resulting from the size enlarging of D-Au NPs, proven by that the heating power of a single Au nanoparticle (Ps) and turnover frequency of AB molecules within 10 minutes of D-Au NPs are 52.5 and 3.89 times higher than that of spherical Au NPs; ⅱ) the extinction coefficient and Ps of D-Au NPs are almost 2.72 and 2.42 times as high as that of rod-like Au NPs, demonstrating the promoting structure-property relationship of dumbbell-like structure.; ⅲ) when the pH value of AB solution was lower than 6.0, the hydrolysis rate was highly promoted, indicating that H+ ions play an active role in the hydrolysis process. This work greatly extends the application of noble metals and provides a new insight into AB hydrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...