Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 600
Filter
1.
Mol Carcinog ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990091

ABSTRACT

Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.

2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 693-698, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948292

ABSTRACT

Objective: To investigate the effects of intraoperative intravenous administration of dexmedetomidine (DEX) on the recovery quality of donors undergoing pure laparoscopic donor hepatectomy. Methods: A total of 56 liver donors who were going to undergo scheduled pure laparoscopic donor hepatectomy were enrolled and randomly assigned to two groups, a DEX group ( n=28) and a control group ( n=28). Donors in the DEX group received DEX infusion at a dose of 1 µg/kg over 15 minutes through a continuous pump, which was followed by DEX at 0.4 µg/(kg·h) until the disconnection of the portal branch. Donors in the control group were given an equal volume of 0.9% normal saline at the same infusion rate and over the same period of time as those of the dex infusion in the DEX group. The primary outcome was the incidence of emergence agitation (EA). The Aono's Four-point Scale (AFPS) score was used to assess EA. The secondary observation indicators included intraoperative anesthesia and surgery conditions, spontaneous respiration recovery time, recovery time, extubation time, scores for the Ramsay Sedation Scale, the incidence of chills, numeric rating scale (NRS) score for pain, and blood pressure and heart rate after extubation. Results: The incidence of EA was 10.7% and 39.3% in the DEX group and the control group, respectively, and the incidence of EA was significantly lower in the DEX group than that in the control group ( P=0.014). The APFS scores after extubation in the DEX group were lower than those in the control group (1 [1, 1] vs. 2 [1, 3], P=0.005). Compared to the control group, the dosages of intraoperative propofol and remifentanil were significantly reduced in the DEX group ( P<0.05). During the recovery period, the number of donors requiring additional boluses of analgesia, the blood pressure, and the heart rate were all lower in the DEX group than those in the control group ( P<0.05). No significant differences between the two groups were observed in the spontaneous respiration recovery time, recovery time, extubation time, the incidence of chills, NRS score, scores for the Ramsay Sedation Scale, and the length-of-stay in postanesthesia care unit (PACU) ( P>0.05). Conclusion: DEX can reduce the incidence of EA after pure laparoscopic donor hepatectomy and improve the quality of recovery without prolonging postoperative recovery time or extubation time.


Subject(s)
Dexmedetomidine , Hepatectomy , Laparoscopy , Dexmedetomidine/administration & dosage , Humans , Hepatectomy/methods , Male , Female , Adult , Living Donors , Liver Transplantation , Hypnotics and Sedatives/administration & dosage , Anesthesia Recovery Period
3.
J Neuroinflammation ; 21(1): 167, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956605

ABSTRACT

BACKGROUND: Deposition of amyloid ß, which is produced by amyloidogenic cleavage of APP by ß- and γ-secretase, is one of the primary hallmarks of AD pathology. APP can also be processed by α- and γ-secretase sequentially, to generate sAPPα, which has been shown to be neuroprotective by promoting neurite outgrowth and neuronal survival, etc. METHODS: The global expression profiles of miRNA in blood plasma samples taken from 11 AD patients as well as from 14 age and sex matched cognitively normal volunteers were analyzed using miRNA-seq. Then, overexpressed miR-140 and miR-122 both in vivo and in vitro, and knock-down of the endogenous expression of miR-140 and miR-122 in vitro. Used a combination of techniques, including molecular biology, immunohistochemistry, to detect the impact of miRNAs on AD pathology. RESULTS: In this study, we identified that two miRNAs, miR-140-3p and miR-122-5p, both targeting ADAM10, the main α-secretase in CNS, were upregulated in the blood plasma of AD patients. Overexpression of these two miRNAs in mouse brains induced cognitive decline in wild type C57BL/6J mice as well as exacerbated dyscognition in APP/PS1 mice. Although significant changes in APP and total Aß were not detected, significantly downregulated ADAM10 and its non-amyloidogenic product, sAPPα, were observed in the mouse brains overexpressing miR-140/miR-122. Immunohistology analysis revealed increased neurite dystrophy that correlated with the reduced microglial chemotaxis in the hippocampi of these mice, independent of the other two ADAM10 substrates (neuronal CX3CL1 and microglial TREM2) that were involved in regulating the microglial immunoactivity. Further in vitro analysis demonstrated that both the reduced neuritic outgrowth of mouse embryonic neuronal cells overexpressing miR-140/miR-122 and the reduced Aß phagocytosis in microglia cells co-cultured with HT22 cells overexpressing miR-140/miR-122 could be rescued by overexpressing the specific inhibitory sequence of miR-140/miR-122 TuD as well as by addition of sAPPα, rendering these miRNAs as potential therapeutic targets. CONCLUSIONS: Our results suggested that neuroprotective sAPPα was a key player in the neuropathological progression induced by dysregulated expression of miR-140 and miR-122. Targeting these miRNAs might serve as a promising therapeutic strategy in AD treatment.


Subject(s)
Alzheimer Disease , Chemotaxis , Mice, Inbred C57BL , MicroRNAs , Microglia , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Humans , Microglia/metabolism , Microglia/pathology , Male , Chemotaxis/physiology , Female , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice, Transgenic , Aged , Gene Expression Regulation
4.
Skin Res Technol ; 30(7): e13826, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965804

ABSTRACT

OBJECTIVE: The aim of this study is to investigate the factors influencing the recurrence of diabetic foot ulcers (DFU) and provide guidance for reducing the recurrence rate. METHODS: A total of 211 patients diagnosed with DFU who were hospitalized and discharged from the hospital from October 2015 to January 2020 were included as the study cohort. Participants were divided into two groups according to whether the foot ulcer recurred during the 2-year follow-up period: a recurrence group (n = 84) and a non-recurrence group (n = 127). The following data were collected and analyzed for the two groups of patients: general information, foot information, laboratory indicators, diabetes comorbidities, and complications. RESULTS: (1) The overall recurrence rate of diabetic foot ulcers (DFU) within 2 years was 39.8%, indicating a high recurrence rate. (2) Significant differences were observed between the two patient groups in terms of BMI, HbA1c, TBIL, CRP, financial situation, foot deformity, first ulcer on the sole of the foot, previous amputation history, Wagner grade of the first ulcer, osteomyelitis, DFU duration (>60 days), lower limb vascular reconstruction, peripheral arterial disease (PAD), and diabetic peripheral neuropathy (DPN) (t = 2.455; Z = -1.988, -3.731, -3.618; χ2 = 7.88, 5.004, 3.906, 17.178, 16.237, 5.007, 24.642, 4.782, 29.334, 10.253). No significant differences were found for the other indicators. (3) Logistic regression analysis revealed that TBIL (OR = 0.886, p = 0.036) was a protective factor against ulcer recurrence. In contrast, PAD, previous amputation history, DPN, and the first ulcer on the sole of the foot (OR = 3.987, 6.758, 4.681, 2.405; p < 0.05 or p < 0.01) were identified as risk factors for ulcer recurrence. CONCLUSION: Early screening and preventive education targeting high-risk factors such as DPN, PAD and the initial ulcer location on the sole of the foot are essential to mitigate the high long-term recurrence rate of DFU. Furthermore, the protective role of TBIL in preventing ulcer recurrence underscores the importance of monitoring bilirubin levels as part of a comprehensive management strategy for DFU patients.


Subject(s)
Diabetic Foot , Recurrence , Humans , Diabetic Foot/epidemiology , Male , Female , Middle Aged , Aged , Risk Factors
5.
Theranostics ; 14(8): 3339-3357, 2024.
Article in English | MEDLINE | ID: mdl-38855186

ABSTRACT

Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.


Subject(s)
Cell Differentiation , Cell Proliferation , Glucose , Keratinocytes , Psoriasis , Psoriasis/metabolism , Psoriasis/pathology , Glucose/metabolism , Humans , Animals , Mice , Keratinocytes/metabolism , Disease Models, Animal , Single-Cell Analysis , Epidermal Cells/metabolism , Reactive Oxygen Species/metabolism , Energy Metabolism , Epidermis/metabolism , Epidermis/pathology , Imiquimod , Male
6.
Opt Express ; 32(9): 14994-15007, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859161

ABSTRACT

Matrix multiplication acceleration by on-chip photonic integrated circuits (PICs) is emerging as one of the attractive and promising solutions, offering outstanding benefits in speed and bandwidth as compared to non-photonic approaches. Incorporating nonvolatile phase-change materials into PICs or devices enables optical storage and computing, surpassing their electrical counterparts. In this paper, we propose a design of on-chip photonic convolution for optical in-memory computing by integrating the phase change chalcogenide of Ge2Sb2Se4Te1 (GSST) into an asymmetric directional coupler for constructions of an in-memory computing cell, marrying the advantages of both the large bandwidth of Mach-Zehnder interferometers (MZIs) and the small size of micro-ring resonators (MRRs). Through quasi-continuous electro-thermal tuning of the GSST-integrated in-memory computing cells, numerical calculations about the optical and electro-thermal behaviors during GSST phase transition confirm the tunability of the programmable elements stored in the in-memory computing cells within [-1, 1]. For proof-of-concept verification, we apply the proposed optical convolutional kernel to a typical image edge detection application. As evidenced by the evaluation results, the prototype achieves the same accuracy as the convolution kernel implemented on a common digital computer, demonstrating the feasibility of the proposed scheme for on-chip photonic convolution and optical in-memory computing.

7.
Head Neck ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850095

ABSTRACT

OBJECTIVE: This study evaluated the effectiveness of a submental island flap in closing advanced mandibular medication-related osteonecrosis of the jaw (MRONJ) wounds in patients with malignant tumors. SUBJECTS AND METHODS: A total of 85 patients with stage II and III MRONJ of mandible with malignant tumor as their primary disease were retrospectively analyzed. All patients underwent surgical treatment, and the soft tissue wound closure was performed either with a submental island flap (SIF) or mucoperiosteal flap (MF). Univariate and multifactorial models were applied to analyze the factors influencing patients' prognosis. RESULTS: Univariate analysis (p = 0.004, OR 0.075-0.575, 95% CI) and binary logistic regression (p = 0.017, OR 0.032-0.713, 95% CI) suggested that the surgical prognosis of SIF wound closure was significantly better than that of MF. CONCLUSION: Closure of wound after resection of mandibular MRONJ lesions in patients with malignant tumors using SIF had a better clinical prognosis compared with MF.

8.
Acta Pharm Sin B ; 14(6): 2598-2612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828149

ABSTRACT

Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) is an essential tyrosine phosphatase that is pivotal in regulating various cellular signaling pathways such as cell growth, differentiation, and survival. The activation of SHP2 has been shown to have a therapeutic effect in colitis and Parkinson's disease. Thus, the identification of SHP2 activators and a complete understanding of their mechanism is required. We used a two-step screening assay to determine a novel allosteric activator of SHP2 that stabilizes it in an open conformation. Oleanolic acid was identified as a suitable candidate. By binding to R362, K364, and K366 in the active center of the PTP domain, oleanolic acid maintained the active open state of SHP2, which facilitated the binding between SHP2 and its substrate. This oleanolic acid-activated SHP2 hindered Th17 differentiation by disturbing the interaction between STAT3 and IL-6Rα and inhibiting the activation of STAT3. Furthermore, via the activation of SHP2 and subsequent attenuation of the STAT3-Th17 axis, oleanolic acid effectively mitigated colitis in mice. This protective effect was abrogated by SHP2 knockout or administration of the SHP2 inhibitor SHP099. These findings underscore the potential of oleanolic acid as a promising therapeutic agent for treating inflammatory bowel diseases.

9.
Chembiochem ; : e202400387, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923144

ABSTRACT

In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.

10.
Abdom Radiol (NY) ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935093

ABSTRACT

OBJECTIVES: With the widespread clinical application of prostate magnetic resonance imaging (MRI), there has been an increasing demand for lesion detection and accurate diagnosis in prostate MR, which relies heavily on satisfactory image quality. Focusing on the primary sequences involved in Prostate Imaging Reporting and Data System (PI-RADS), this study have evaluated common quality issues in clinical practice (such as signal-to-noise ratio (SNR), artifacts, boundaries, and enhancement). The aim of the study was to determine the impact of image quality on clinically significant prostate cancer (csPCa) detection, positive predictive value (PPV) and radiologist's diagnosis in different sequences and prostate zones. METHODS: This retrospective study included 306 patients who underwent prostate MRI with definitive pathological reports from February 2021 to December 2022. All histopathological specimens were evaluated according to the recommendations of the International Society of Urological Pathology (ISUP). An ISUP Grade Group ≥ 2 was considered as csPCa. Three radiologists from different centers respectively performed a binary classification assessment of image quality in the following ten aspects: (1) T2WI in the axial plane: SNR, prostate boundary conditions, the presence of artifacts; (2) T2WI in the sagittal or coronal plane: prostate boundary conditions; (3) DWI: SNR, delineation between the peripheral and transition zone, the presence of artifacts, the matching of DWI and T2WI images; (4) DCE: the evaluation of obturator artery enhancement, the evaluation of dynamic contrast enhancement. Fleiss' Kappa was used to determine the inter-reader agreement. Wilson's 95% confidence interval (95% CI) was used to calculate PPV. Chi-square test was used to calculate statistical significance. A p-value < 0.05 was considered statistically significant. RESULTS: High-quality images had a higher csPCa detection rate (56.5% to 64.3%) in axial T2WI, DWI, and DCE, with significant statistical differences in SNR in axial T2WI (p 0.002), the presence of artifacts in axial T2WI (p 0.044), the presence of artifacts in DWI (p < 0.001), and the matching of DWI and T2WI images (p < 0.001). High-quality images had a higher PPV (72.5% to 78.8%) and showed significant statistical significance in axial T2WI, DWI, and DCE. Additionally, we found that PI-RADS 3 (24.0% to 52.9%) contained more low-quality images compared to PI-RADS 4-5 (20.6% to 39.3%), with significant statistical differences in the prostate boundary conditions in axial T2WI (p 0.048) and the presence of artifacts in DWI (p 0.001). Regarding the relationship between csPCa detection and image quality in different prostate zones, this study found that significant statistical differences were only observed between high- (63.5% to 75.7%) and low-quality (30.0% to 50.0%) images in the peripheral zone (PZ). CONCLUSION: Prostate MRI quality may have an impact on the diagnostic performance. The poorer image quality is associated with lower csPCa detection rates and PPV, which can lead to an increase in radiologist's ambiguous diagnosis (PI-RADS 3), especially for the lesions located at PZ.

11.
Ecol Evol ; 14(6): e11492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932955

ABSTRACT

Beta diversity patterns along environmental gradients and underlying mechanisms constitute key research inquiries in biogeography. However, ecological processes often also influence the functional traits of biological communities, making the assessment of functional ß-diversity crucial. Ground beetles (Coleoptera: Carabidae) are one of the most species-rich groups in the insect community, displaying strong habitat specificity and morphological differences. In this study, we explored the patterns of taxonomic and functional beta diversity in ground beetle communities along the altitudinal gradient of warm-temperature forests. By partitioning beta diversity into turnover and nestedness components, we evaluated their relationship with spatial distance. Our findings indicate a decline in species and functional trait similarity with increasing elevation and geographic distance. Further analysis attributed both types of beta diversity in carabids to a combination of dispersal limitation and environmental filtering, with elevation and geographic distance emerging as significant factors. Interestingly, forest-type variations were found to have no impact on the beta diversity of these communities. Our study reveals the impact of environmental filtering and dispersal limitation on both taxonomic and functional beta-diversity, shedding light on carabid community assembly in localized warm-temperature forest areas in eastern China.

12.
Curr Gene Ther ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38860905

ABSTRACT

Tumor cells achieve their adaptability through various metabolic reprogramming processes. Among them, ammonia, as a traditional metabolic waste, plays an increasingly important role in the tumor microenvironment along with its associated metabolites. Other cells in the microenvironment can also reshape the immune status of the microenvironment by regulating ammonia-related metabolism, and targeting this metabolic aspect has emerged as a potential strategy for tumor treatment. In this study, we have systematically reviewed the source and destination of ammonia in tumor cells, as well as the links between ammonia and other biological processes. We have also analyzed the ammonia-related metabolic regulation of other cells (including T cells, macrophages, dendritic cells, natural killer cells, myeloid-derived suppressor cells, and stromal cells) in the tumor microenvironment, and summarized the tumor treatment methods that target this metabolism. Through ammonia-related metabolic reprogramming, tumor cells obtain the energy they need for rapid growth and proliferation. Multiple immune cells and stromal cells in the microenvironment also interact with each other through this metabolic regulation, ultimately leading to immune suppression. Despite the heterogeneity of tumors and the complexity of cellular functions, further research into therapeutic interventions targeting ammonia-related metabolism is warranted. This review has focused on the role and regulation of ammonia-related metabolism in tumor cells and other cells in the microenvironment, and highlighted the efficacy and prospects of targeted ammonia-related metabolism therapy.

13.
J Environ Manage ; 364: 121447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870796

ABSTRACT

The coordination of development efforts and ecological conservation in China's border regions is a significant challenge due to the overlap of biodiversity hotspots, ecologically fragile zones, and impoverished areas. Achieving the harmonious integration of ecological preservation and economic development relies on the fundamental assessment of ecological security (ES). However, comprehensive assessments of ES in border regions remain limited. This study introduces a new index, the multivariate ecological security index (MESI), which integrates ecosystem vigor, organization, elasticity, services and risk. Here, the MESI was utilized to assess the temporal and spatial changes in ES and its associated impact factors in the China-Myanmar border region (CMBR) from 2000 to 2020. The MESI provides a clear representation of the actual ES status in the CMBR, exhibiting a significant correlation with the eco-environmental quality index (EEQI; p < 0.01). The ES status exhibited notable spatial heterogeneity in the CMBR, consisting primarily of both relatively safe and safe levels, which accounted for approximately 85% of the total area. From 2000 to 2020, the CMBR experienced a gradual improvement in ES status, with the area experiencing an increase in the ES level accounting for 23.41% of the total area, which exceeded the proportion of the area experiencing a decrease in the ES level (4.71%). The combined impact of multiple factors exerted a greater influence on ES than did individual factors alone. Notably, human factors increasingly influenced the ES status during the study period. The results of this study provide valuable insights for ecological preservation and sustainable management in the CMBR, and the MESI can be extended to assess the ES of other regions.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , China , Myanmar , Ecology
14.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895361

ABSTRACT

Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made towards understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.

15.
Int J Bipolar Disord ; 12(1): 21, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874862

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS: Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS: There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (ß = 0.32 p < 0.001) and PFC volume (ß = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: ß = 0.39 p = 0.02; CG: ß = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (ß = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS: Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.

16.
Prosthet Orthot Int ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38896541

ABSTRACT

BACKGROUND: Stretching exercise is generally used for improving flexibility. However, its application to promote orthotic treatment for patients with adolescent idiopathic scoliosis (AIS) remains unknown. OBJECTIVE: This study was to explore the effect of pre-orthosis stretching exercises on spinal flexibility and initial in-orthosis correction for the patients with AIS. STUDY DESIGN: A pilot-controlled study. METHODS: An experimental group (EG) of 13 subjects (10 girls and 3 boys) with AIS allocating to self-stretching exercises and a control group (CG) of 19 AIS subjects (14 girls and 5 boys) with no stretching before orthosis fitting were recruited. The spinal flexibility of the EG was evaluated with an ultrasound imaging system and physical measurements. The initial in-orthosis correction rates between the 2 groups were compared with the independent t test, and the correlation analysis between the spinal flexibility measured from ultrasound images and physical measurement was performed with the Pearson correlation test. RESULTS: The initial Cobb angle of EG and CG were 25.70° ± 7.30° and 28.09° ± 5.58°, respectively. No significant difference was observed between the initial in-orthosis Cobb angle of EG (11.13° ± 6.80°) and CG (15.65° ± 9.10°) (p = 0.06). However, the spinal flexibility after stretching exercises was improved (p < 0.001), and the spinal flexibility changes measured with ultrasound and physical forward-bending method were significantly correlated (r = 0.57, p < 0.05). CONCLUSION: Stretching exercises before orthotic treatment could improve the spinal flexibility but did not cause a better in-orthosis correction. A study with a larger sample size and longer follow-up period should be conducted to investigate the long-term effect of stretching exercises.

17.
Bioorg Chem ; 148: 107469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781669

ABSTRACT

PARP7 has been proven to play an important role in immunity. Substantial upregulation of PARP7 is observed in numerous cancerous cell types, consequently resulting in the inhibition of type Ⅰ interferon signaling pathways. Therefore, inhibiting the activity of PARP7 can enhance type Ⅰ interferon signaling to exert an anti-tumor immune response. In this study, we reported the identification of a newly found PARP7 inhibitor (XLY-1) with higher inhibitory activity (IC50 = 0.6 nM) than that of RBN-2397 (IC50 = 6.0 nM). Additionally, XYL-1 displayed weak inhibitory activity on PARP1 (IC50 > 1.0 µM). Mechanism studies showed that XYL-1 could enhance the type Ⅰ interferon signaling in vitro. Pharmacodynamic experiments showed that 50 mg/kg XYL-1 could significantly inhibit tumor growth (TGI: 76.5 %) and related experiments showed that XYL-1 could restore type Ⅰ interferon signaling and promote T cell infiltration in tumor tissues. Taken together, XYL-1 shows promise as a potential candidate for developing cancer immunotherapy agents.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Immunotherapy , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Animals , Mice , Cell Proliferation/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Mice, Inbred BALB C
18.
medRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746245

ABSTRACT

Background: The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods: Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results: Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/ß-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions: Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.

19.
Mol Psychiatry ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719894

ABSTRACT

Post-traumatic stress disorder (PTSD) is a hypermnesic condition that develops in a subset of individuals following exposure to severe trauma. PTSD symptoms are debilitating, and include increased anxiety, abnormal threat generalization, and impaired extinction. In developing treatment strategies for PTSD, preclinical studies in rodents have largely focused on interventions that target post-encoding memory processes such as reconsolidation and extinction. Instead, here we focus on forgetting, another post-encoding process that regulates memory expression. Using a double trauma murine model for PTSD, we asked whether promoting neurogenesis-mediated forgetting can weaken trauma memories and associated PTSD-relevant behavioral phenotypes. In the double trauma paradigm, consecutive aversive experiences lead to a constellation of behavioral phenotypes associated with PTSD including increases in anxiety-like behavior, abnormal threat generalization, and deficient extinction. We found that post-training interventions that elevate hippocampal neurogenesis weakened the original trauma memory and decreased these PTSD-relevant phenotypes. These effects were observed using multiple methods to manipulate hippocampal neurogenesis, including interventions restricted to neural progenitor cells that selectively promoted integration of adult-generated granule cells into hippocampal circuits. The same interventions also weakened cocaine place preference memories, suggesting that promoting hippocampal neurogenesis may represent a broadly useful approach in hypermnesic conditions such as PTSD and substance abuse disorders.

20.
Discov Oncol ; 15(1): 153, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730061

ABSTRACT

Parthanatos, a cell death mechanism triggered by PARP-1 activation, is implicated in oncogenic processes, yet their role in low-grade gliomas (LGG) remains poorly understood. This research investigates Parthanatos-related miRNAs' prognostic and immunomodulatory potential, alongside their influence on therapeutic outcomes in LGGs. Comprehensive miRNA and mRNA profiles of LGG patients were extracted from TCGA and CGGA databases, integrating clinical parameters to identify Parthanatos-associated miRNAs. IHC data validated the expression levels of Parthanatos-related genes in glioma versus normal brain tissues. Protein-protein interaction networks and Spearman correlation analysis facilitated the identification of key miRNAs. Parthanatos-related miRNA indices (PMI) were screened using Lasso and assessed for their accuracy in predicting prognosis, comparing their associated potential molecular functions and heterogeneity of the immune microenvironment. Drug sensitivity was assessed between different groups and optimal therapeutic agents were predicted. Validate the expression levels of key miRNAs by qPCR. Ninety-one miRNAs significantly associated with Parthanatos were screened, through which a PMI prognosis model of nine miRNAs was constructed. The PMI score was able to independently predict the prognosis of patients with LGG, and the nomogram constructed based on the PMI provided a practical tool for clinical prediction of patient prognosis. The proportion of immune response was lower in patients in the high-risk group, and there were significant differences in drug sensitivity between different risk classes, while drugs such as Fasudil were identified as the most promising therapeutic agents for patients in the high-risk group. Our findings highlight the critical role of Parthanatos-associated miRNAs in the progression and treatment of LGG, offering novel insights into their prognostic value and therapeutic potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...