Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(15): e202400172, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38345140

ABSTRACT

A negatively curved aza-nanographene (NG) containing two octagons was synthesized by a regioselective and stepwise cyclodehydrogenation procedure, in which a double aza[7]helicene was simultaneously formed as an intermediate. Their saddle-shaped structures with negative curvature were unambiguously confirmed by X-ray crystallography, thereby enabling the exploration of the structure-property relationship by photophysical, electrochemical and conformational studies. Moreover, the assembly of the octagon-embedded aza-NG with fullerenes was probed by fluorescence spectral titration, with record-high binding constants (Ka=9.5×103 M-1 with C60, Ka=3.7×104 M-1 with C70) found among reported negatively curved polycyclic aromatic compounds. The tight association of aza-NG with C60 was further elucidated by X-ray diffraction analysis of their co-crystal, which showed the formation of a 1 : 1 complex with substantial concave-convex interactions.

2.
Angew Chem Int Ed Engl ; 62(48): e202311645, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37819601

ABSTRACT

As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic π-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (ΦPL ) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (ΦEL ) of 4×10-4 . Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology.

3.
Adv Mater ; : e2302005, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37623325

ABSTRACT

Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.

4.
J Phys Chem Lett ; 14(24): 5607-5612, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37307380

ABSTRACT

The nonfullerene electron acceptors (NFAs) for organic solar cells are attracting intense research efforts due to their impressive performance. Understanding the temporal evolution of the excited states in NFAs is essential to gain insights into the working mechanism of these state-of-the-art devices. Here we characterized the photoconductivities of a neat Y6 film and a Y6:PM6 blend film using time-resolved terahertz spectroscopy. Three different types of excited states were identified based on their distinct terahertz responses, i.e., plasma-like carriers, weakly bound excitons, and spatially separated carriers. Under high-intensity excitation, the many-body interaction of excitons in the Y6 film leads to the plasma-like state, giving rise to a terahertz response characteristic for a dispersive charge transport. This transient state decays quickly into exciton gas due to fast Auger annihilation. Under low-intensity excitation, only isolated excitons are created and the plasma state is absent.

5.
Sci Bull (Beijing) ; 68(9): 928-937, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085396

ABSTRACT

Low-cost, solution-processed photomultiplication organic photodetectors (PM-OPDs) with external quantum efficiency (EQE) above unity have attracted enormous attention. However, their weak-light detection is unpleasant because the anode Ohmic contact causes exacerbation in dark current. Here, we introduce atomic-level chemical reaction in PM-OPDs which can simultaneously suppress dark current and increase EQE via depositing a 0.8 nm thick Al2O3 by the atomic layer deposition. Suppression in dark current mainly originates from the built-in anode Schottky junction as a result of work function decrease of hole-transporting layer of which the chemical groups can react chemically with the bottom surface of Al2O3 layer at the atomic-level. Such strategy of suppressing dark current is not adverse to charge injection under illumination; instead, responsivity enhancement is realized because charge injection can shift from cathode to anode, of which the neighborhood possesses increased photogenerated carriers. Consequently, weak-light detection limit of the forwardly-biased PM-OPD with Al2O3 treatment reaches a remarkable level of 2.5 nW cm-2, while that of the reversely-biased control is 25 times inferior. Meanwhile, the PM-OPD yields a record high EQE and responsivity of 4.31 × 108% and 1.85 × 106 A W-1, respectively, outperforming all other polymer-based PM-OPDs.

6.
Angew Chem Int Ed Engl ; 62(18): e202218494, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36861254

ABSTRACT

Double helicenes are appealing chiral frameworks. Their π-extension is desirable to achieve (chir)optical response in the visible and near-infrared (NIR) region, but access to higher double [n]helicenes (n≥8) has remained challenging. Herein, we report an unprecedented π-extended double [9]helicene (D9H), unambiguously revealing its structure by single-crystal X-ray diffraction. D9H shows remarkable NIR emission from 750 to 1100 nm with a high photoluminescence quantum yield of 18 %. In addition, optically pure D9H exhibits panchromatic circular dichroism with a notable dissymmetry factor (gCD ) of 0.019 at 590 nm, which is among the highest in the visible region for reported helicenes.

7.
Chem Commun (Camb) ; 58(94): 13087-13090, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36341944

ABSTRACT

We present the synthesis and characterization of the first triple oxa[6]helicene with C3 symmetry. In contrast to the reported D3-symmetric triple oxa[7]helicene, the C3-symmetric analogue holds parallel electric and magnetic transition dipole moments and thus enhanced luminescence dissymmetry, shedding light on the critical role of molecular symmetry on chiroptical response.

8.
ACS Appl Mater Interfaces ; 14(32): 36582-36591, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35938933

ABSTRACT

A ternary strategy is viable to minimize the trade-off between short-circuit current density (Jsc) and open-circuit voltage (Voc) in organic solar cells. Generally, the ternary OSCs can achieve a higher PCE than the binary counterparts by subtly utilizing the particular photoelectric properties of the third material. In this regard, we choose BTP-CC with a higher-lying LUMO level based on a fused TPBT (dithienothiophen[3.2-b]-pyrrolobenzothiadiazole) central framework and CC (2-(6-oxo-5,6-dihydro-4H-cyclopenta [b]thiophen-4-ylidene) malononitrile) flanking groups as the third component to broaden the light-absorption spectrum, regulate the bulk heterojunction (BHJ) morphology, improve the Voc, and reduce the charge recombination in OSCs. In addition, BTP-CC demonstrates intense intermolecular energy transfer to Y6 by fluorescence resonance energy transfer (FRET) pathway, which is due to the photoluminescence (PL) spectrum of BTP-CC covering the absorption region of Y6. The PM6:Y6:BTP-CC based ternary OSC achieves a champion PCE of 17.55%. Further investigation indicates that introduction of BTP-CC could reduce the trap states in OSCs, leading to an increased charge carrier density. Moreover, the incorporation of BTP-CC could improve the device stability. These results demonstrated that BTP-CC is important in improving the photovoltaic performance of ternary OSCs, and this work also provides a guideline for constructing ideal ternary OSCs in the future.

9.
Chemistry ; 28(58): e202202243, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35880725

ABSTRACT

We present here the synthesis and in-depth physicochemical characterization of a double hetero[7]helicene fused with four triazole rings at both helical ends. The comparison of this triazole-fused double helicene with the previously reported all-carbon and thiadiazole-fused analogs revealed the huge impact of the embedded aromatic rings on the photophysical features. The small structural variation of the terminal rings from thiadiazole to triazole caused a dramatic change of the photoluminescence quantum yields (PLQYs) from <1 % to 96 %, while the replacement of the terminal benzene rings with triazole rings induced a tenfold enhancement of the circularly polarized luminescence dissymmetry factor. These observations were well corroborated with transient absorption analysis and/or theoretic calculations. In addition, the triazole-fused double helicene exhibited ambipolar redox behavior, enabling the generation of radical cation and anion species by electrochemical and chemical methods and showing its potential for spin-related applications.

10.
ACS Appl Mater Interfaces ; 14(16): 18043-18052, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420773

ABSTRACT

Multimodal imaging-guided combinational phototherapies triggered by a single near-infrared (NIR) laser are highly desirable. However, their development is still a big challenge. Herein, we have developed an "acceptor-donor-acceptor'-donor-acceptor" structured organic phototheranostics (Y16-Pr) with strong light-harvesting ability in the NIR region. After being modified with polyethylene glycol (PEG), the obtained biocompatible nanoparticles (Y16-Pr-PEG NPs) could conduct NIR-II fluorescence imaging (FLI) and photoacoustic imaging (PAI) and perform photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously. Notably, Y16-Pr-PEG NPs showed an impressive photothermal conversion efficiency (PCE) of 82.4% under 808 nm laser irradiation. The irradiated NPs could also produce hydroxyl radicals (•OH) and singlet oxygen (1O2) for type I and type II PDT, respectively. In vivo and in vitro experiments revealed that the Y16-Pr-PEG NPs significantly inhibit tumor cell growth without apparent toxic side effects under laser irradiation. Overall, the single-laser-triggered multifunctional phototheranostic Y16-Pr-PEG NPs can achieve NIR-II FLI/PAI-guided synergistic PTT/PDT against tumors.


Subject(s)
Nanoparticles , Photoacoustic Techniques , Photochemotherapy , Cell Line, Tumor , Nanoparticles/therapeutic use , Optical Imaging , Photoacoustic Techniques/methods , Photochemotherapy/methods , Phototherapy , Theranostic Nanomedicine/methods
11.
Org Lett ; 24(12): 2414-2419, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35302773

ABSTRACT

The synthesis of a class of contorted electron-deficient polycyclic aromatic hydrocarbons (PAHs) has been achieved by a one-pot bay annulation of perylene diimide involving a mild Suzuki coupling and subsequent air-mediated, ambient-light-induced photocyclization. X-ray crystallography unambiguously confirmed the contorted PAH structure bearing four imide groups. The photophysical and electronic properties of these contorted PAHs were also analyzed, showing a high fluorescence quantum yield of 86% and moderate electron mobility of 0.017 cm2 V-1 s-1.

12.
Inorg Chem ; 61(3): 1521-1529, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34985269

ABSTRACT

The rational design and preparation of monolayer metal-organic framework (MOF) nanosheets remain great challenges. Recently, we found that monolayer MOF nanosheets can be facially exfoliated on a large scale from pristine two-dimensional (2D) MOFs with substantially reduced interlaminar interaction. By employing cage-like bicyclocalix[2]arene[2]triazine tri-imidazole as the building block, a family of cationic two-dimensional metal-organic frameworks (2D MOFs) with steric layer were designed and prepared. The single crystal structures have clearly identified that only very weak and sparse distributed C-H···π interaction exists between adjacent layers.On the basis of density functional theory calculation, the interlayer interaction of these cage-based cationic 2D MOFs was estimated to be 1/46th of that of graphite. Due to the extremely weak interaction, these cationic 2D MOFs tend to degenerate into an "amorphous" state after being soaked in other solvents; they can be readily exfoliated into 1.1 nm thick monolayer nanosheets with a high degree of thickness homogeneity, large lateral size, and significantly enlarged surface area. This work has identified that a cage-like molecule is the ideal building block for 2D cationic MOFs and ultrathin nanosheets; It was futher confirmed that weakening the interlaminar interaction is an effective strategy for facilely producing monolayer nanosheets.

13.
ACS Cent Sci ; 7(11): 1787-1797, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34841053

ABSTRACT

Applying an asymmetric strategy to construct non-fullerene small-molecule acceptors (NFSMAs) in organic solar cells (OSCs) plays a vital role in the development of organic photovoltaic materials. In the past several years, taking advantage of the larger dipole moment and stronger intermolecular interactions, asymmetric NFSMAs have witnessed tremendous progress in OSCs with a power conversion efficiency of over 18%. From a structural point of view, besides the possible changes in the conformation effect on molecular packing, asymmetric acceptors can also achieve a balance between the solubility and the crystallinity. Herein, we systematically investigate the structure-property-performance relationships of asymmetric NFSMAs that have recently emerged and try to clarify the feasibility and practicality of an asymmetric strategy for the design of higher-performance NFSMAs. Finally, we put forward our views and a concise outlook on the asymmetric strategy.

14.
Natl Sci Rev ; 8(8): nwab121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34691721

ABSTRACT

Y6 and its derivatives have advanced the efficiency of organic solar cells to 15%-18%. This perspective reveals the device and photo physics features of Y-series based devices and proposed some guidelines for future molecular design.

15.
ChemSusChem ; 14(21): 4731-4740, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34411457

ABSTRACT

A new wide-bandgap conjugated D-A polymer denoted as P106 with a medium acceptor dithieno [2,3-e;3'2'-g]isoindole-7,9 (8H) (DTID) unit and strong 2-dodecylbenzo[1,2-b:3,4-b':6,5-b"]trithiophene (3TB) donor units shows an optical bandgap of 2.04 and highest occupied molecular orbital energy level of -5.56 eV. P106 is used as the donor and two nonfullerene acceptors-medium bandgap DBTBT-IC and narrow band Y18-DMO-are used as acceptors for the construction of binary and ternary bulk heterojunction polymer solar cells. The optimized polymer solar cells based on P106 : DBTBT-IC and P106 : Y18-DMO exhibit power conversion efficiencies of 11.76 % and 14.07 %, respectively. The short-circuit current density (22.78 mA cm-2 ) for the P106 : Y18-DMO device is higher than that for P106 : DBTBT-IC (18.56 mA cm-2 ) one, which could be attributed to the more photon harvesting efficiency of the P106 : Y18-DMO active layer. In light of the high short-circuit current densities and fill factors for the Y18-DMO based device and the high value of open circuit voltage of the DBTBT-IC based device, ternary polymer solar cells are fabricated by using ternary active layer (P106 : DBTBT-IC : Y18-DMO) and achieve a power conversion efficiency of 16.49 % with low energy loss of 0.47 eV.

16.
Adv Mater ; 33(39): e2101844, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34365677

ABSTRACT

Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.

17.
Front Bioeng Biotechnol ; 9: 699610, 2021.
Article in English | MEDLINE | ID: mdl-34268300

ABSTRACT

In this study, a chemically synthetic polymer, benzo[1,2-b:4,5-b']difuran(BDF)-based donor-acceptor copolymer PBDFDTBO, was individually coated by amphiphilic poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol) (DSPE-PEG or PEG-DSPE), to form stably fluorescent nanoparticles in the near-infrared (NIR) window. The physicochemical properties of the synthesized nanoparticles were characterized and compared, including their size, surface charge, and morphology. In addition, in vitro studies were also performed using two pancreatic cancer cell lines, assessing the cell viability of the PBDFDTBO-included PEGylated nanoparticles formulations. Moreover, in vivo studies were also conducted, using subcutaneous murine cancer models to investigate the polymeric nanoparticles' circulation time, tumor accumulation, and preferred organ biodistribution. The overall results demonstrated that even with the same PEGylated surface, the hydrophobic composition anchored on the encapsulated PBDFDTBO core strongly affected the biodistribution and tumor accumulation of the nanoparticles, to a degree possibly determined by the hydrophobic interactions between the hydrophobic segment of amphiphilic polymers (DSPE or PCL moiety) and the enwrapped PBDFDTBO. Both PEGylated nanoparticles were compared to obtain an optimized coating strategy for a desired biological feature in pancreatic cancer delivery.

18.
J Phys Chem B ; 125(27): 7470-7476, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34219460

ABSTRACT

Recently, rapid progress in the power conversion efficiency for organic solar cells (OSCs) is achieved due to the phenomenal development of the nonfullerene electron acceptors. In addition to the pairing electron donors, conjugated donor-acceptor copolymers are another key player in the high-efficiency OSCs. Here, the temporal evolution of excited states in a typical copolymer, PM6, was traced by transient absorption spectroscopy. The spectroscopic result implies the formation of two kinetically correlated intrachain species, polaron excitons and intrachain polaron pairs. In the presence of the interchain interaction, these intrachain species quickly convert into interchain polaron pairs on a time scale of few picoseconds. Our findings reveal that the electron transfer mechanisms in PM6-based OSCs substantially depend on the PM6 environment in the bulk heterojunction blends.

19.
ACS Appl Mater Interfaces ; 13(30): 36053-36061, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34293857

ABSTRACT

Optimizing the molecular structures of organic solar cell (OSC) materials and boosting the power conversion efficiencies are the eternal theme in the solar energy region. A series of fused benzotriazole (BTA)-based A-DA'D-A structures of nonfullerene acceptors (such as Y18) were developed for application in efficient OSCs, in which high quantum efficiencies and low voltage losses could be achieved because of the optimized electron-deficient core and specific molecular geometry. Here, based on the BTA core, the bulky alkyl chain on the BTA unit was further tailored to minimize the lateral alkyl chains and enhance the crystallinity while maintaining an adequate solubility. The resulting NFAs of BTA-C1, BTA-C5, and BTA-C6 are synthesized. Compared with the well-designed molecular Y18 (BTA-C8), we found that simply replacing the 2-ethylhexyl chain with a single methyl (BTA-C1) can easily improve the fill factor up to 77%, but its poor light absorption capacity and large domain size impeded further efficiency improvement. In particular, the BTA-C5, with a shortened branch alkyl chain of 2-methylbutyl, achieves suitable solubility and enhanced crystallinity. Significantly, owing to the balanced charge carrier mobility and suitable phase separation, the BTA-C5-based binary single-junction OSCs achieve a high efficiency of 17.11%, which is one of the top values in BTA-based OSCs.

20.
Org Lett ; 23(16): 6183-6188, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33872015

ABSTRACT

Herein we present a synthesis of an S-shaped double helicene with fused imide moieties, achieving a contorted aromatic diimide (DHDI) with good fluorescence properties in both solution and the solid state. DHDI demonstrates distinct mechanofluorochromism from yellow to green emission under grinding of its crystalline powder.

SELECTION OF CITATIONS
SEARCH DETAIL
...