Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(8): 5055-5060, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332788

ABSTRACT

As an important chemical intermediate, aniline is primarily produced industrially through catalytic hydrogenation of nitrobenzene. Herein, a series of nitrogen-doped carbon materials (referred to as NCM-T, with T denoting the roasting temperature (°C)) were prepared through high-temperature roasting of sucrose and melamine for the heterogeneous catalytic liquid-phase hydrogenation of nitrobenzene to aniline. A preliminary study of the involved reaction mechanism was performed by combining the results of material characterisation and catalyst evaluation. Experimental results showed that the graphitic N content and the defective sites simultaneously affected the performance of NCM-T in catalysing the hydrazine hydrate reduction in the nitrobenzene hydrogenation reaction. The catalyst NCM-800 was reacted in an ethanol solution with hydrazine hydrate as the reducing agent at 80 °C for 5 h. Notably, the nitrobenzene conversion rate was up to 94%, and the aniline selectivity was 100%. The turnover frequency (TOF) could reach up to 7.9 mol g-1 h-1, and after five recycling cycles, only a small loss of catalytic activity was observed. This shows that the prepared catalyst is a recyclable catalyst that can be used for reducing the nitrobenzene from hydrazine hydrate to aniline.

2.
Adv Mater ; 36(16): e2312608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195802

ABSTRACT

Improving catalytic activity of surface iridium sites without compromising catalytic stability is the core task of designing more efficient electrocatalysts for oxygen evolution reaction (OER) in acid. This work presents phase transition of a bulk layered iridate Na2IrO3 in acid solution at room temperature, and subsequent exfoliation to produce 2D iridium oxide nanosheets with around 4 nm thickness. The nanosheets consist of OH-terminated, honeycomb-type layers of edge-sharing IrO6 octahedral framework with intrinsic in-plane iridium deficiency. The nanosheet material is among the most active Ir-based catalysts reported for acidic OER and gives an iridium mass activity improvement up to a factor of 16.5 over rutile IrO2 nanoparticles. The material also exhibits good catalytic and structural stability and retains the catalytic activity for more than 1300 h. The combined experimental and theoretical results demonstrate that edge Ir sites of the layer are active centers for OER, with structural hydroxyl groups participating in the catalytic cycle of OER via a non-traditional adsorbate evolution mechanism. The existence of intrinsic in-plane iridium deficiency is the key to building a unique local environment of edge active sites that have optimal surface oxygen adsorption properties and thereby high catalytic activity.

3.
Angew Chem Int Ed Engl ; 62(48): e202313101, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37792288

ABSTRACT

The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.

4.
Angew Chem Int Ed Engl ; 62(46): e202311606, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37754555

ABSTRACT

Improving catalytic activity without loss of catalytic stability is one of the core goals in search of low-iridium-content oxygen evolution electrocatalysts under acidic conditions. Here, we synthesize a family of 66 SrBO3 perovskite oxides (B=Ti, Ru, Ir) with different Ti : Ru : Ir atomic ratios and construct catalytic activity-stability maps over composition variation. The maps classify the multicomponent perovskites into chemical groups with distinct catalytic activity and stability for acidic oxygen evolution reaction, and highlights a chemical region where high catalytic activity and stability are achieved simultaneously at a relatively low iridium level. By quantifying the extent of hybridization of mixed transition metal 3d-4d-5d and oxygen 2p orbitals for multicomponent perovskites, we demonstrate this complex interplay between 3d-4d-5d metals and oxygen atoms in governing the trends in both activity and stability as well as in determining the catalytic mechanism involving lattice oxygen or not.

5.
Nat Commun ; 14(1): 5119, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612274

ABSTRACT

The sluggish kinetics of oxygen evolution reaction (OER) and high iridium loading in catalyst coated membrane (CCM) are the key challenges for practical proton exchange membrane water electrolyzer (PEMWE). Herein, we demonstrate high-surface-area nano-metal diborides as promising supports of iridium-based OER nanocatalysts for realizing efficient, low-iridium-loading PEMWE. Nano-metal diborides are prepared by a novel disulphide-to-diboride transition route, in which the entropy contribution to the Gibbs free energy by generation of gaseous sulfur-containing products plays a crucial role. The nano-metal diborides, TaB2 in particular, are investigated as the support of IrO2 nanocatalysts, which finally forms a TaOx/IrO2 heterojunction catalytic layer on TaB2 surface. Multiple advantageous properties are achieved simultaneously by the resulting composite material (denoted as IrO2@TaB2), including high electrical conductivity, improved iridium mass activity and enhanced corrosion resistance. As a consequence, the IrO2@TaB2 can be used to fabricate the membrane electrode with a low iridium loading of 0.15 mg cm-2, and to give an excellent catalytic performance (3.06 A cm-2@2.0 V@80 oC) in PEMWE-the one that is usually inaccessible by unsupported Ir-based nanocatalysts and the vast majority of existing supported Ir-based catalysts at such a low iridium loading.

6.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615656

ABSTRACT

Radioactive iodine-capturing materials are urgently needed for the emerging challenges in nuclear waste disposal. The various pore structures of covalent organic frameworks (COFs) render them promising candidates for efficient iodine adsorption. However, the detailed structure-property relationship of COFs in iodine adsorption remains elusive. Herein, two polymorphic COFs with significantly different crystalline structures are obtained based on the same building blocks with varied molecular ratios. The two COFs both have high crystallinity, high specific surface area, and excellent chemical and thermal stability. Compared with the [C4+C4] topology (PyT-2) with an AA stacking form, the [C4+C2] topology (PyT-1) with an AB stacking form has more twisted pore channels and complex ink-bottle pores. At ambient conditions, PyT-1 and PyT-2 both exhibit good adsorption properties for iodine capture either in a gaseous or liquid medium. Remarkably, PyT-1 presents an excellent maximum adsorption capacity (0.635 g g-1), and the adsorption limit of PyT-2 is 0.445 g g-1 in an n-hexane solution with an iodine concentration of 400 mg L-1, which is highly comparable to the state-of-the-art iodine absorption performance. This study provides a guide for the future molecular design strategy toward novel iodine adsorbents.

7.
Adv Mater ; 35(12): e2208539, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586400

ABSTRACT

The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here, phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst are presented. This transformation involves two major steps: Sr2+ /H+ ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. The resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of the common amorphous IrOx Hy phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of OO bonds in electrocatalytic cycle. As a result, the open-framework iridate derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1000 h.

8.
Chem Sci ; 13(36): 10868-10877, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36320715

ABSTRACT

In the MFI zeolite crystallization process, the classical crystallization mechanism based upon the addition of silica species is often concomitant with the nonclassical route that is characteristic of the attachment of silica nanoparticle precursors. However, the factors that govern the preferences for each mechanism remain unclear. In this work, we present the impact of switching between these two crystallization pathways on the active sites and the resulting catalytic performance of the titanosilicate TS-1 zeolite. By controlling the self-assembled precursor structures in the early crystallization stage which are mediated by the Ti and H2O in the reaction system, we could achieve the preferred modes of crystal growth of the TS-1 zeolite. We indicate that by directing the predominant crystallization path from the classical to the nonclassical route, it is possible to generate more stable bridging peroxo species upon reaction with hydrogen peroxide, as confirmed by 17O solid-state nuclear magnetic resonance spectroscopy, thus substantially increasing the catalytic performance of the resulting TS-1 for olefin epoxidation.

9.
ACS Appl Mater Interfaces ; 13(23): 27029-27040, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096275

ABSTRACT

Constructing highly active and stable surface sites for O2 activation is essential to lower the barrier of Pt-based catalysts for CO oxidation. Although a few active Pt-metal oxide interfaces have been reported, questions about the stability of these sites under the long-term storage and operation remain unresolved. Here, based on developing a robust FeOx/LaFeO3 heterostructure as a support, we constructed stable Pt-support interfaces to achieve highly active CO oxidation at room temperature. Even after it is kept in the air for more than 6 months, the catalyst (without pretreatment) still maintains the high activity like a fresh one, which is superior to metal hydroxide-Pt interfaces, and meets the requirements of long-term storage for emergency use. In situ characterizations and systematic reaction results showed that CO oxidation occurs through an alternative mechanism, which is triggered by intrinsic reactants and self-adjusted to a more active interface in the reaction process. Theoretical calculations and 57Fe Mössbauer spectra revealed that abundant cation vacancies significantly increase the activity of surface oxygen species and should be responsible for this unique process. This work demonstrates an alternative concept to fabricate robust and highly active Pt-based catalysts for catalytic oxidation.

10.
Nat Commun ; 12(1): 2741, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980837

ABSTRACT

Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.

11.
Angew Chem Int Ed Engl ; 60(16): 8967-8975, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33539618

ABSTRACT

Incorporating synthetic macrocycles with unique structures and distinct conformations into conjugated macrocycle polymers (CMPs) can endow the resulting materials with great potentials in gas uptake and pollutant adsorption. Here, four CMPs (CMP-n, n=1-4) capable of reversibly capturing iodine and efficiently separating carbon dioxide are constructed from per-triflate functionalized leaning tower[6]arene (LT6-OTf) and [2]biphenyl-extended pillar[6]arene (BpP6-OTf) via Pd-catalyzed Sonogashira-Hagihara cross-coupling reaction. Intriguingly, owing to the appropriate cavity size of LT6-OTf and the numerous aromatic rings in the framework, the newly designed CMP-4 possesses an outstanding I2 affinity with a large uptake capacity of 208 wt % in vapor and a great removal efficiency of 94 % in aqueous solutions. To our surprise, with no capacity to accommodate nitrogen, CMP-2 constructed from BpP6-OTf is able to specifically capture carbon dioxide at ambient conditions.

12.
Chem Sci ; 11(45): 12341-12349, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-34094443

ABSTRACT

Titanosilicate zeolites are catalysts of interest in the field of fine chemicals. However, the generation and accessibility of active sites in titanosilicate materials for catalyzing reactions with large molecules is still a challenge. Herein, we prepared titanosilicate zeolite precursors with open zeolitic structures, tunable pore sizes, and controllable Si/Ti ratios through a hydrothermal crystallization strategy by using quaternary ammonium templates. A series of quaternary ammonium ions are discovered as effective organic templates. The prepared amorphous titanosilicate zeolites with some zeolite framework structural order have extra-large micropores and abundant octahedrally coordinated isolated Ti species, which lead to a superior catalytic performance in the oxidative desulfurization of dibenzothiophene (DBT) and epoxidation of cyclohexene. It is anticipated that the amorphous prezeolitic titanosilicates will benefit the catalytic conversion of bulky molecules in a wide range of reaction processes.

13.
RSC Adv ; 10(68): 41921-41925, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516574

ABSTRACT

1,4-Bis-triazole-substituted arene (NAT) was designed and synthesized for the construction of metal organic frameworks. Unlike the tri-phenyl analogs, which give a twisted conformation between three benzene rings due to the A-1,3 repulsion, the NAT-ligand gave the energetically favored co-planar conformation with the strong fluorescence emission. With this ligand, two new MOFs, NAT-MOF-Cd (2,3,4-c) and NAT-MOF-Cu (4-c), were successfully obtained with the structure confirmed by X-ray. With the six-coordinated Cd(ii) cluster, an interesting metal-ligand coordination and H-bonding hybridized porous polymeric structures were observed. In contrast, a typical Cu(ii) paddle wheel coordination was obtained with NAT and Cu, giving a new MOF structure with moderate stability in aqueous solution from pH 1-11 for 24 hours, which suggests a promising future for applications in fluorescence sensing and photocatalysis.

14.
Dalton Trans ; 49(1): 89-94, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31815259

ABSTRACT

In this work, a new crystalline polyoxometalate-viologen hybrid, (Pbpy)(Me2NH2)3[PW11ZnO40] (1: Pbpy = 1,1'-[1,4-phenylenebis-(methylene)]bis(4,4'-bipyridinium)), has been synthesized. It showed efficient ultraviolet light detection ability with an obvious colour change from pale yellow to blue and fast response with ultraviolet intensity as low as 0.006 mW cm-2 in narrow-band UV regions. The POM-viologen-based film of 1 has also been readily prepared on quartz substrates using a drop casting method and could exhibit different levels of colour changes under sunlight irradiation at different local times on a sunny day, indicating its potential to be used as a portable device for solar ultraviolet light detection. Ultraviolet light detection is not only reflected in colour changes, but also accompanies the photoluminescence phenomenon. The fluorescence intensity decreased with the increase of UV intensity, and when irradiated with an ultraviolet xenon lamp (8 mW cm-2) for about 5 min, the fluorescence intensity was almost completely quenched. The compound has the potential to achieve fluorescence based UV probing. The powdered sample of compound 1 could also be deposited in paper simply by coating it with a solution of ethanol. The paper can be used as an inkless and erasable print medium, which was found to remain clear for 11 d in the dark under an ambient atmosphere and was also reusable when erased.

15.
ChemSusChem ; 11(21): 3812-3820, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30178630

ABSTRACT

Significant interest has emerged in the development of nanometer-sized and hierarchical silicoaluminophosphate zeolites (SAPO-34) because of their enhanced accessibility and improved catalytic activity for methanol-to-olefin (MTO) conversion. A series of nanometer-sized SAPO-34 catalysts with tunable hierarchical structures was synthesized in a Al2 O3 /H3 PO4 /SiO2 /triethylamine(TEA)/H2 O system by using a mesoporogen-free nanoseed-assisted method. The nanometer-sized hierarchical SH -3.0 catalyst (TEA/Al2 O3 =3.0) possessed the highest crystallinity, highest abundance of intracrystalline meso-/macropores, and the most suitable acidity among all obtained catalysts, showing the highest ethylene and propylene selectivity of 85.4 %. This is the highest reported selectivity for MTO reactions under similar conditions. Detailed analysis of the coke produced during the reaction revealed that the small-sized methyl-substituted benzene and bulky methyl-substituted pyrene were mainly located inside the crystals instead of on the surface of the crystals, which provided further insight into understanding the deactivation of the SAPO-34 catalyst during MTO reaction. Significantly, the simple and cost-effective synthetic process and superb catalytic performance of the nanometer-sized hierarchical SAPO-34 is promising for their practical large-scale application for MTO conversion.

16.
Article in English | MEDLINE | ID: mdl-26554702

ABSTRACT

Novel magnetic adsorbents based on Fe3O4/SiO2/poly(acrylamide-N,N'-methylene bisacrylamide) magnetic microspheres modified with non-ionic triblock copolymer surfactant were successfully prepared as a magnetic solid phase extraction adsorbent for the determination of trace natamycin in jam samples. The adsorbent was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transformed infrared spectroscopy, vibrating sample magnetometer, and X-ray diffractometer analysis, confirming that Pluronic L64 was effectively functionalized on the magnetic materials. Various experimental parameters affecting the extraction capacity were investigated including adsorbent amount, extraction time, desorption time, sample pH, and ionic strength. For recovery evaluations, the jam samples were spiked at two concentration levels of 100 and 200µgkg(-1) of natamycin and the recovery values were in the range of 78.8-93.4%. The relative standard deviations (RSD) for the recoveries were less than 3.5%. The novel magnetic solid phase extraction method provided several advantages, such as simplicity, low environmental impact, convenient extraction procedure, and short analysis time when used for natamycin analysis.


Subject(s)
Acrylamides/chemistry , Acrylic Resins/chemistry , Anti-Infective Agents, Local/isolation & purification , Ferric Compounds/chemistry , Magnetics , Natamycin/isolation & purification , Poloxamer/chemistry , Silicon Dioxide/chemistry , Solid Phase Extraction/methods , Anti-Infective Agents, Local/chemistry , Chromatography, High Pressure Liquid , Microscopy, Electron, Scanning , Natamycin/chemistry , Spectroscopy, Fourier Transform Infrared
17.
Chemistry ; 21(34): 12079-84, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26177594

ABSTRACT

A azine-linked covalent organic framework, COF-JLU2, was designed and synthesized by condensation of hydrazine hydrate and 1,3,5-triformylphloroglucinol under solvothermal conditions for the first time. The new covalent organic framework material combines permanent micropores, high crystallinity, good thermal and chemical stability, and abundant heteroatom activated sites in the skeleton. COF-JLU2 possesses a moderate BET surface area of over 410 m(2) g(-1) with a pore volume of 0.56 cm(3) g(-1) . Specifically, COF-JLU2 displays remarkable carbon dioxide uptake (up to 217 mg g(-1) ) and methane uptake (38 mg g(-1) ) at 273 K and 1 bar, as well as high CO2 /N2 (77) selectivity. Furthermore, we further highlight that it exhibits a higher hydrogen storage capacity (16 mg g(-1) ) than those of reported COFs at 77 K and 1 bar.

18.
ACS Appl Mater Interfaces ; 7(1): 980-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25535924

ABSTRACT

Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

19.
Chem Commun (Camb) ; 50(89): 13825-8, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25253410

ABSTRACT

A new azine-linked covalent organic framework, ACOF-1, was synthesized by condensation of hydrazine hydrate and 1,3,5-triformylbenzene under solvothermal conditions. ACOF-1 has a high surface area and a small pore size, and it can store up to 177 mg g(-1) of CO2, 9.9 mg g(-1) of H2, and 11.5 mg g(-1) of CH4, at 273 K and 1 bar, with high selectivity towards CO2 over N2 and CH4.

20.
Nanoscale ; 6(13): 7255-62, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24700250

ABSTRACT

Developing noble metal-free water oxidation catalysts is essential for many energy conversion/storage processes (e.g., water splitting). Herein, we report the facile synthesis of hollow Co3O4 microspheres composed of porous, ultrathin (<5 nm), single-crystal-like nanosheets via a novel "self-template" route. The successful preparation of these hollow Co3O4 nanomaterials includes three main steps: (1) the synthesis of solid cobalt alkoxide microspheres, (2) their subsequent self-template conversion into hollow cobalt hydroxide microspheres composed of ultrathin nanosheets, and finally (3) thermal treatment of hollow cobalt hydroxide microspheres into the hollow Co3O4 material. The as-obtained hollow Co3O4 nanomaterial possesses a high BET surface area (∼180 m(2) g(-1)), and can serve as an active and stable water oxidation catalyst under both electrochemical and photochemical reaction conditions, owing to its unique structural features. In the electrochemical water oxidation, this catalyst affords a current density of 10 mA cm(-2) (a value related to practical relevance) at an overpotential of ∼0.40 V. Moreover, with the assistance of a sensitizer [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine), this nanomaterial can catalyze water oxidation reactions under visible light irradiation with an O2 evolution rate of ∼12 218 µmol g(-1) h(-1). Our results suggest that delicate nanostructuring can offer unique advantages for developing efficient water oxidation catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...