Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 796, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129810

ABSTRACT

Increasing evidence has shown that the expression of circular RNAs (circRNAs) can affect the drug sensitivity of cells and significantly influence drug efficacy. Therefore, research into the relationships between circRNAs and drugs can be of great significance in increasing the comprehension of circRNAs function, as well as contributing to the discovery of new drugs and the repurposing of existing drugs. However, it is time-consuming and costly to validate the function of circRNA with traditional medical research methods. Therefore, the development of efficient and accurate computational models that can assist in discovering the potential interactions between circRNAs and drugs is urgently needed. In this study, a novel method is proposed, called DHANMKF , that aims to predict potential circRNA-drug sensitivity interactions for further biomedical screening and validation. Firstly, multimodal networks were constructed by DHANMKF using multiple sources of information on circRNAs and drugs. Secondly, comprehensive intra-type and inter-type node representations were learned using bi-typed multi-relational heterogeneous graphs, which are attention-based encoders utilizing a hierarchical process. Thirdly, the multi-kernel fusion method was used to fuse intra-type embedding and inter-type embedding. Finally, the Dual Laplacian Regularized Least Squares method (DLapRLS) was used to predict the potential circRNA-drug sensitivity associations using the combined kernel in circRNA and drug spaces. Compared with the other methods, DHANMKF obtained the highest AUC value on two datasets. Code is available at https://github.com/cuntjx/DHANMKF .


Subject(s)
RNA, Circular , RNA, Circular/genetics , Least-Squares Analysis
2.
BMC Bioinformatics ; 24(1): 476, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097930

ABSTRACT

The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.


Subject(s)
Algorithms , Neoplasms , Humans , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL