Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(18): e2212172, 2023 May.
Article in English | MEDLINE | ID: mdl-36780340

ABSTRACT

The catalytic activity has been investigated in 2D materials, and the unique structural and electronic properties contribute to their success in conventional heterogeneous catalysis. Heterojunction-based piezocatalysis has attracted increasing attention due to the band-structure engineering and the enhanced charge carrier separation by prominent piezoelectric effect. However, the piezocatalytic behavior of van der Waals (vdW) heterostructures is still unknown, and the finite active sites, catalyst poisoning, and poor conductivity are challenges for developing good piezocatalysts. Herein, a reduced graphene oxide (rGO)-MoS2 heterostructure is rationally designed to tackle these challenges. The heterostructure shows a record-high piezocatalytic degradation rate of 1.40 × 102 L mol-1 s-1 , which is 7.86 times higher than MoS2 nanosheets. Piezoresponse force microscope measurements and density functional theory calculation reveal that the coupling between semiconductive and piezoelectric properties in the vdW heterojunction is vital to break the metallic state screening effect at the MoS2 edge for keeping the piezoelectric potential. The dynamic charges generated by MoS2 and the fast charge transfer in rGO activate and maintain catalytically active sites for pollutant degradation with an ultra-fast rate and good stability. The working mechanism opens new avenues for developing efficient catalysts significant to wastewater treatments and other applications.

2.
IEEE Trans Cybern ; 52(3): 1479-1489, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32452793

ABSTRACT

In this article, a novel disturbance observer-based adaptive neural control (ANC) scheme is proposed for full-state-constrained pure-feedback nonlinear systems using a new system transformation method. A nonlinear transformation function in a uniformed design framework is constructed to convert the original states with constrained bounds into the ones without any constraints. By combining an auxiliary first-order filter, an augmented nonlinear system without any state constraint is derived to circumvent the difficulty of the controller design caused by the nonaffine input signal. Based on the augmented nonlinear system, a nonlinear disturbance observer (NDO) is designed to enhance the disturbance rejection ability. Subsequently, the NDO-based ANC scheme is presented by combining the second-order filters with backstepping. The proposed scheme confines all states within the predefined bounds, eliminates the condition on both the known sign and bounds of control gains, improves the robustness of the closed-loop system, and alleviates the computational burden. Two simulation examples are performed to show the validity of the presented scheme.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Computer Simulation , Feedback
3.
Inorg Chem ; 60(16): 11897-11906, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34319708

ABSTRACT

Acoustic velocities and elasticity of stoichiometric submicron polycrystalline δ-MoN have been reported at high pressure using ultrasonic measurements and first-principles calculations. Using the finite-strain equation-of-state approach, the bulk modulus and shear rigidity, as well as their pressure derivatives, are derived from the current experimental data, yielding BS0 = 360.0(8) GPa, G0 = 190.0(5) GPa, ∂BS/∂P = 3.4(2), and ∂G/∂P = 1.4(1). Based on our experimental data and the velocity-elasticity correlated models, the mechanical/thermal properties (i.e., hardness, fracture toughness, Grüneisen parameter, Debye temperature, Poisson's ratio) are also derived. Interestingly, we find that hexagonal δ-MoN is almost as incompressible as superhard cubic boron nitride (cBN) (∼384 GPa) and its hexagonal ε-NbN (∼373 GPa) counterpart, and its shear rigidity (G = 190 GPa) is comparable to that of the superhard diamond composite (G = 204 GPa). Moreover, the fracture toughness of submicron δ-MoN polycrystals is achieved up to ∼4.3 MPa·m1/2, which is comparable to superhard diamond (4-7 MPa·m1/2) and cBN (2-5 MPa·m1/2). The Vickers hardness of submicron δ-MoN is estimated to be Hv ≈ 17.4 GPa using Chen's model, which is found to be almost as hard as hexagonal ε-NbN and δ-WN, and may be very important for its applications in extreme environments.

4.
Phys Chem Chem Phys ; 20(16): 11430-11436, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29645038

ABSTRACT

Here, we report a high-pressure study of orthorhombic structured ß-Sb2O3 (valentinite) by the combination of synchrotron in situ X-ray diffraction and first-principles theoretical calculations at pressures up to 40.5 GPa. Our results reveal that the metastable ß-Sb2O3 undergoes an isostructural phase transition at high pressure, yielding a distorted ß phase at 7-15 GPa through symmetry breaking and structural distortion as inferred from our XRD analyses and DFT theoretical calculations where pressure-induced elasticity softening is observed at pressures of 7-15 GPa. At pressures higher than 15 GPa, a new high-pressure monoclinic phase is discovered from the current synchrotron X-ray diffraction data. Upon further compression up to ∼33 GPa, the monoclinic Sb2O3 starts to lose its long-range order and forms an amorphous component coexisting with the monoclinic one. To further explore the structural instability and understand the origin of pressure-induced phase transitions in ß-Sb2O3 upon compression, we have performed first-principles calculations to track the evolution of its phonon velocities, density of states and phonon dispersion curves under high pressure. Our results may play an important role in determining the local structures as well as their structural relationship among sesquioxides.

5.
Sci Rep ; 7(1): 724, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28389659

ABSTRACT

Pressure-induced polyamorphism in Ce-based metallic glass has attracted significant interest in condensed matter physics. In this paper, we discover that in association with the polyamorphism of La32Ce32Al16Ni5Cu15 bulk metallic glass, the acoustic velocities, measured up to 12.3 GPa using ultrasonic interferometry, exhibit velocity minima at 1.8 GPa for P wave and 3.2 GPa for S wave. The low and high density amorphous states are distinguished by their distinct pressure derivatives of the bulk and shear moduli. The elasticity, permanent densification, and polyamorphic transition are interpreted by the topological rearrangement of solute-centered clusters in medium-range order (MRO) mediated by the 4f electron delocalization of Ce under pressure. The precisely measured acoustic wave travel times which were used to derive the velocities and densities provided unprecedented data to document the evolution of the bulk and shear elastic moduli associated with a polyamorphic transition in La32Ce32Al16Ni5Cu15 bulk metallic glass and can shed new light on the mechanisms of polyamorphism and structural evolution in metallic glasses under pressure.

6.
Sci Rep ; 6: 22330, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923318

ABSTRACT

Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

7.
Sci Rep ; 5: 10811, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26028439

ABSTRACT

Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.

8.
Rev Sci Instrum ; 81(8): 085102, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20815623

ABSTRACT

A sapphire anvil cell, a portable system having a sample volume of about 400 mm(3) (Phi8x8 mm), has been developed for gas hydrates research under high pressure. As both pressure and temperature of the sample can be precisely monitored in real time, the system has significant advantages for gas hydrates research at the pressure range of 1-40 MPa and temperature range of 250-350 K. We have applied this sapphire anvil cell system to carry out experiments for investigating the formation and dissociation of CO(2) hydrate. In addition, the developed sapphire anvil cell can be used for in situ thermal, electric, ultrasonic, visible light, Raman, and IR measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...