Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Theriogenology ; 226: 49-56, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38838614

ABSTRACT

During aging, oocytes display cytoskeleton dynamics defects and aneuploidy, leading to embryonic aneuploidy, which in turn causes miscarriages, implantation failures, and birth defects. KIF15 (also known as Hklp2), a member of the kinesin-12 superfamily, is a cytoplasmic motor protein reported to be involved in Golgi and vesicle-related transport during mitosis in somatic cells. However, the regulatory mechanisms of KIF15 during meiosis in porcine oocytes and the connection with postovulatory aging remain unclear. In present study, we found that KIF15 is expressed during porcine oocyte maturation, and its localization is dependent on microtubule dynamics. Furthermore, the level of KIF15 expression decreased in postovulatory aged oocytes. The decrease in KIF15 blocked polar body extrusion, thereby hindering oocyte maturation. We demonstrated that KIF15 defects contributed to abnormal spindle morphologies and chromosome misalignment, possibly due to microtubule instability, as evidenced by microtubule depolymerization after cold treatment. Additionally, our data indicated that KIF15 modulates HDAC6 to affect tubulin acetylation in oocytes. Taken together, these results suggest that KIF15 regulates HDAC6-related microtubule stability for spindle organization in porcine oocytes during meiosis, which may contribute to the decline in maturation competence in aged porcine oocytes.

2.
Int J Pharm ; : 124343, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880254

ABSTRACT

The development of Levonorgestrel Intrauterine Systems (LNG-IUSs) stands as a formidable challenge due to their intricate design and reliance on specialized manufacturing methods. Pharmaceutical manufacturers face a labyrinth of process variables that demand precise identification and comprehension to establish a robust product design to ensure consistent performance. The current manuscript navigates through this complexity, describing a small-scale processing method for LNG-IUSs via addition and condensation curing processes, as well as investigating the influence of key manufacturing variables on LNG-IUS product performance. Different mixing speeds and time exhibited distinct impact on drug content uniformity within the IUS drug-polymer reservoirs. Surprisingly, no variation in drug release rates were observed. Curing temperature and time were the critical processing parameters of IUSs which were dependent on the polymer type (polydimethylsiloxane, PDMS) and drug loading. At lower curing temperatures, crosslinking in PDMS remained relatively unaffected, irrespective of drug loading. By contrast, elevating curing temperatures resulted in a drastic reduction in PDMS crosslinking densities at higher drug loading. This was attributed to increased drug volume fraction within the matrix, impeding optimal prepolymer chain mobility and rearrangement which is crucial for complete crosslinking. Interestingly, rapid curing led to increased PDMS crystallinity, thereby retarding drug release rates while concurrently compromising mechanical properties. PDMS curing chemistry, such as condensation cure (no filler) and addition cure (cured at room temperature), did not affect drug release rates of the LNG-IUSs. In the condensation cure-based LNG-IUS, the formulations prepared without filler had higher drug release rates than those containing silica or diatomaceous earth fillers. Overall, the present study unravels the intricate interplay between PDMS characteristics, processing variables, and product performance, offering fundamental insights into product design and manufacturing of brand and generic LNG-IUS products.

3.
J Ethnopharmacol ; 332: 118357, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763374

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS: The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS: The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION: The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Plant Leaves , Plant Stems , Polysaccharides , Plant Leaves/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/chemistry , Animals , Plant Stems/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Mice , Swine , Plant Extracts/pharmacology , Plant Extracts/chemistry , Intestines/drug effects , RAW 264.7 Cells
4.
J Pharm Pharmacol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727186

ABSTRACT

OBJECTIVES: Bile acids (BAs), as signaling molecules to regulate metabolism, have received considerable attention. Genipin is an iridoid compound extracted from Fructus Gradeniae, which has been shown to relieve adiposity and metabolic syndrome. Here, we investigated the mechanism of genipin counteracting obesity and its relationship with BAs signals in diet-induced obese (DIO) rats. METHODS: The DIO rats were received intraperitoneal injections of genipin for 10 days. The body weight, visceral fat, lipid metabolism in the liver, thermogenic genes expressions in brown fat, BAs metabolism and signals, and key enzymes for BAs synthesis were determined. KEY FINDINGS: Genipin inhibited fat synthesis and promoted lipolysis in the liver, and upregulated thermogenic gene expressions in brown adipose tissue of DIO rats. Genipin increased bile flow rate and upregulated the expressions of aquaporin 8 and the transporters of BAs in liver. Furthermore, genipin changed BAs composition by promoting alternative pathways and inhibiting classical pathways for BAs synthesis and upregulated the expressions of bile acid receptors synchronously. CONCLUSIONS: These results suggest that genipin ameliorate obesity through BAs-mediated signaling pathways.

5.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Article in English | MEDLINE | ID: mdl-38774028

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cyclic Nucleotide Phosphodiesterases, Type 3 , Genetic Therapy , Liposomes , Macrophages , Mice, Inbred DBA , RNA, Small Interfering , Animals , Liposomes/chemistry , Liposomes/administration & dosage , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/chemically induced , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/prevention & control , Arthritis, Experimental/therapy , Macrophages/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , Genetic Therapy/methods , Male , Signal Transduction/drug effects
6.
J Control Release ; 370: 124-139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648956

ABSTRACT

The wide array of polydimethylsiloxane (PDMS) variants available on the market, coupled with the intricate combination of additives in silicone polymers, and the incomplete understanding of drug release behavior make formulation development of levonorgestrel intrauterine systems (LNG-IUSs) formidable. Accordingly, the objectives of this work were to investigate the impact of excipients on formulation attributes and in vitro performance of LNG-IUSs, elucidate drug release mechanisms, and thereby improve product understanding. LNG-IUSs with a wide range of additives and fillers were prepared, and in vitro drug release testing was conducted for up to 12 months. Incorporating various additives and/or fillers (silica, silicone resins, silicone oil, PEG, etc.) altered the crystallization kinetics of the crosslinked polymer, the viscosity, and the microstructure. In addition, drug-excipient interactions can occur. Interestingly, additives which increased matrix hydrophobicity and hindered PDMS crystallization facilitated dissolution and permeation of the lipophilic LNG. The influence of additives and lubricants on the mechanical properties of LNG-IUSs were also evaluated. PDMS chemical substitution and molecular weight were deemed to be most critical polymer attributes to the in vitro performance of LNG-IUSs. Drugs with varying physicochemical characteristics were used to prepare IUSs, modeling of the release kinetics was performed, and correlations between release properties and the various physicochemical attributes of the model drugs were established. Strong correlations between first order release rate constants and both drug solubility and Log P underpin the partition and diffusion-based release mechanisms in LNG-IUSs. This is the first comprehensive report to provide a mechanistic understanding of material-property-performance relationships for IUSs. This work offers an evidence-based approach to rational excipient selection and tailoring of drug release to achieve target daily release rates in vivo. The novel insights gained through this research could be helpful for supporting development of brand and generic IUS products as well as their regulatory assessment.


Subject(s)
Dimethylpolysiloxanes , Drug Liberation , Excipients , Levonorgestrel , Levonorgestrel/chemistry , Levonorgestrel/administration & dosage , Levonorgestrel/pharmacokinetics , Excipients/chemistry , Dimethylpolysiloxanes/chemistry , Intrauterine Devices, Medicated , Crystallization , Contraceptive Agents, Female/administration & dosage , Contraceptive Agents, Female/chemistry , Contraceptive Agents, Female/pharmacokinetics , Viscosity
7.
Int J Biol Macromol ; 268(Pt 2): 131816, 2024 May.
Article in English | MEDLINE | ID: mdl-38677682

ABSTRACT

Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.


Subject(s)
Antioxidants , Paeonia , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Paeonia/chemistry , Ultrasonic Waves , Cell Line , Animals , Oxidative Stress/drug effects , Chemical Fractionation/methods , Lipopolysaccharides/pharmacology
8.
Front Pharmacol ; 15: 1337633, 2024.
Article in English | MEDLINE | ID: mdl-38650630

ABSTRACT

Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.

10.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587639

ABSTRACT

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Subject(s)
Kinesins , Oocytes , Animals , Mice , Biological Transport , Kinesins/genetics , Meiosis , Metaphase
11.
PLoS One ; 19(4): e0302650, 2024.
Article in English | MEDLINE | ID: mdl-38687744

ABSTRACT

INTRODUCTION: Zhilong Huoxue Tongyu Capsule (ZL) is a Chinese medicine used for the treatment of cardio-cerebral diseases. However, the pharmacological mechanisms underlying its regulation of myocardial ischemia/reperfusion injury (MI/RI) remain unclear. PURPOSE: This study aims to investigate the effects and mechanisms of ZL on MI/RI in mice. MATERIALS AND METHODS: C57BL/6J mice were randomly assigned to four groups: Sham group, I/R group, ZL group, and ZLY group. The MI/RI mouse model was established by ligation of the left anterior descending coronary artery for 30 minutes, followed by reperfusion for 120 minutes to restore blood perfusion. Cardiac function was evaluated using cardiac ultrasound. Histopathological changes and myocardial infarction area were assessed using Hematoxylin and eosin (H&E) staining and triphenyltetrazolium chloride (TTC) staining. The changes in oxidative stress- and ferroptosis-related markers were detected. RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of ZL in improving MI/RI. RESULTS: Our findings demonstrated that ZL exerted a protective effect against MI/RI by inhibiting ferroptosis, evidenced by the upregulation of antioxidant enzymes such as GSH and GPX4, coupled with the downregulation of ACSL4, a pro-ferroptosis factor. Furthermore, ZL positively impacted the PI3K/AKT/Nrf2 pathway by promoting ATPase activities and enhancing the relative protein expression of its components. Notably, the administration of a PI3K/AKT inhibitor reversed the antioxidant and anti-ferroptosis effects of ZL to some extent, suggesting a potential role for this pathway in mediating ZL's protective effects. CONCLUSIONS: ZL protects against MI/RI-induced ferroptosis by modulating the PI3K/AKT signaling pathway, leading to increased Nrf2 expression and activation of the HO-1/GPX4 pathway. These findings shed light on the potential therapeutic mechanisms of ZL in the context of cardiovascular diseases.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Mice, Inbred C57BL , Myocardial Reperfusion Injury , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Mice , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Ferroptosis/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
12.
Front Nutr ; 11: 1334506, 2024.
Article in English | MEDLINE | ID: mdl-38487635

ABSTRACT

Introduction: This paper examines the association between the dietary inflammatory index (DII) and the risk of metabolic syndrome (MS) and its components among Uygur adults in Kashi, Xinjiang. Methods: The study used the multi-stage random cluster sampling method to investigate the adult residents of Uighu aged over 18 years old in one county and one township/street of three cities in Kashi between May and June 2021. All dietary data collected were analyzed for energy and nutrient intake with a nutritional analysis software, followed by a calculation of DII. Logistic regression was used to estimate the association between DII and the risks of MS and its components. Results: The maximum DII value across our 1,193 respondents was 4.570 to 4.058, with an average value of 0.256. When we analyzed the DII as a continuous variable, we determined the anti-inflammatory diet has been identified as a mitigating factor for metabolic syndrome (OR = 0.586, 95% CI = 0.395-0.870), obesity (OR = 0.594, 95% CI = 0.395-0.870), elevated fasting glucose levels (OR = 0.422, 95% CI = 0.267-0.668), and hypertension (OR = 0.698, 95% CI = 0.488-0.996). When the model was adjusted by sex, age, and occupation, we found a significant correlation between high- and low-density lipoproteinemia and DII (OR = 1.55, 95% CI = 1.040-2.323). The present study identified four distinct dietary patterns among the population under investigation. There was a linear trend in the incidence of MS and hypertension across low, middle, and high levels of fruits and milk dietary pattern model (p = 0.027; p = 0.033), within this dietary pattern may serve as protective factors against MS and hypertension, suggesting that fruits and milk within this dietary pattern may serve as protective factors against MS and hypertension. And the linear trend in the incidence of elevated fasting glucose and obesity across the low, medium, and high scores of meet and eggs dietary pattern (p = 0.006; p < 0.001), suggest that a diet rich in meat may potentially contribute to an increased risk of developing elevated fasting glucose levels and obesity. An observed linear trend in the incidence rate of high fasting blood glucose across low, moderate, and high scores of dried fruits and nuts dietary pattern (p = 0.014), indicating that increased consumption of nuts acted as a protective factor against elevated fasting blood glucose levels and contributed to their reduction. Discussion: The dietary inflammation index was integrated with the findings from the study on the dietary patterns of the sampled population, revealing that an anti-inflammatory diet demonstrated a protective effect against metabolic syndrome, obesity, high fasting blood glucose, and hypertension in this specific population. laying the foundation for further research.

13.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38505899

ABSTRACT

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Subject(s)
Agaricales , Agaricales/metabolism , Dietary Supplements , Fermentation , Dietary Fiber , Mycelium
14.
Mol Med ; 30(1): 23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317106

ABSTRACT

BACKGROUND: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD: Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT: Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved ß cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION: Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Mice , Humans , Animals , Diabetes Mellitus, Type 1/drug therapy , Mice, Inbred NOD , Fluvoxamine/pharmacology , Fluvoxamine/therapeutic use , Th17 Cells , Phosphatidylinositol 3-Kinases , Th1 Cells
16.
Phys Med Biol ; 69(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38306973

ABSTRACT

Objective. To assist urologist and radiologist in the preoperative diagnosis of non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), we proposed a combination models strategy (CMS) utilizing multiparametric magnetic resonance imaging.Approach. The CMS includes three components: image registration, image segmentation, and multisequence feature fusion. To ensure spatial structure consistency of T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced imaging (DCE), a registration network based on patch sampling normalized mutual information was proposed to register DWI and DCE to T2WI. Moreover, to remove redundant information around the bladder, we employed a segmentation network to obtain the bladder and tumor regions from T2WI. Using the coordinate mapping from T2WI, we extracted these regions from DWI and DCE and integrated them into a three-branch dual-channel input. Finally, to fully fuse low-level and high-level features of T2WI, DWI, and DCE, we proposed a distributed multilayer fusion model for preoperative MIBC prediction with five-fold cross-validation.Main results. The study included 436 patients, of which 404 were for the internal cohort and 32 for external cohort. The MIBC was confirmed by pathological examination. In the internal cohort, the area under the curve, accuracy, sensitivity, and specificity achieved by our method were 0.928, 0.869, 0.753, and 0.929, respectively. For the urologist and radiologist, Vesical Imaging-Reporting and Data System score >3 was employed to determine MIBC. The urologist demonstrated an accuracy, sensitivity, and specificity of 0.842, 0.737, and 0.895, respectively, while the radiologist achieved 0.871, 0.803, and 0.906, respectively. In the external cohort, the accuracy of our method was 0.831, which was higher than that of the urologist (0.781) and the radiologist (0.813).Significance. Our proposed method achieved better diagnostic performance than urologist and was comparable to senior radiologist. These results indicate that CMS can effectively assist junior urologists and radiologists in diagnosing preoperative MIBC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Urinary Bladder Neoplasms , Humans , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder/pathology , Retrospective Studies
17.
J Neuroinflammation ; 21(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178196

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a common but severe psychiatric illness characterized by depressive mood and diminished interest. Both nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 1 (NLRP1) inflammasome and autophagy have been reported to implicate in the pathological processes of depression. However, the mechanistic interplay between NLRP1 inflammasome, autophagy, and depression is still poorly known. METHODS: Animal model of depression was established by chronic social defeat stress (CSDS). Depressive-like behaviors were determined by social interaction test (SIT), sucrose preference test (SPT), open field test (OFT), forced swim test (FST), and tail-suspension test (TST). The protein expression levels of NLRP1 inflammasome complexes, pro-inflammatory cytokines, phosphorylated-phosphatidylinositol 3-kinase (p-PI3K)/PI3K, phosphorylated-AKT (p-AKT)/AKT, phosphorylated-mechanistic target of rapamycin (p-mTOR)/mTOR, brain-derived neurotrophic factor (BDNF), phosphorylated-tyrosine kinase receptor B (p-TrkB)/TrkB, Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl2) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were examined by western blotting. The mRNA expression levels of pro-inflammatory cytokines were tested by quantitative real-time PCR. The interaction between proteins was detected by immunofluorescence and coimmunoprecipitation. Neuronal injury was assessed by Nissl staining. The autophagosomes were visualized by transmission electron microscopy. Nlrp1a knockdown was performed using an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. RESULTS: CSDS exposure caused a bidirectional change in hippocampal autophagy function, which was activated in the initial period but impaired at the later stage. In addition, CSDS exposure increased the expression levels of hippocampal NLRP1 inflammasome complexes, pro-inflammatory cytokines, p-PI3K, p-AKT and p-mTOR in a time-dependent manner. Interestingly, NLRP1 is immunoprecipitated with mTOR but not PI3K/AKT and CSDS exposure facilitated the immunoprecipitation between them. Hippocampal Nlrp1a knockdown inhibited the activity of PI3K/AKT/mTOR signaling, rescued the impaired autophagy and ameliorated depressive-like behavior induced by CSDS. In addition, rapamycin, an autophagy inducer, abolished NLRP1 inflammasome-driven inflammatory reactions, alleviated depressive-like behavior and exerted a neuroprotective effect. CONCLUSIONS: Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behavior in mice and the regulation of autophagy could be a valuable therapeutic strategy for the management of depression.


Subject(s)
Depression , Depressive Disorder, Major , Animals , Mice , Antidepressive Agents/pharmacology , Autophagy , Cytokines/metabolism , Depression/metabolism , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Inflammasomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
18.
Heliyon ; 10(1): e23077, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163129

ABSTRACT

Context: Cardiomyocyte hypertrophy due to hemodynamic overload eventually leads to heart failure. Hirudin has been widely used in the treatment of cardiovascular diseases and NLRP3 inflammasome was proven to induce cardiomyocyte pyroptosis. However, the mechanism by which it inhibits cardiomyocyte hypertrophy remains unclear. Objective: To explore the mechanism of hirudin inhibiting cardiomyocyte hypertrophy based on NLRP3 inflammasome activation and mitophagy. Materials & methods: 1 µM AngII was used for cardiac hypertrophy modeling in H9C2 cells, and cell viability was quantified by CCK-8 assay to screen the appropriate action concentrations of hirudin. After that, we cultured AngII induced-H9C2 cells for 24 h with 0, 0.3, 0.6, and 1.2 mM hirudin, respectively. Next, we marked H9C2 cells with phalloidine and observed them using fluorescence microscope. IL-1ß, IL-18, IL-6, TNF-α, ANP, BNP, ß-MHC, and mtDNA were analyzed by qRT-PCR; ROS were quantified by Flow cytometry; SOD, MDA, and GSH-Px were detected by ELISA; and proteins including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18, PINK-1, Parkin, beclin-1, LC3-Ⅰ, LC3-Ⅱ, p62, were quantified by western blotting. Results: It was discovered that hirudin reduced the superficial area of AngII-induced H9C2 cells and inhibited the AngII-induced up-regulation of ANP, BNP, and ß-MHC. Besides, hirudin down-regulated the expressions of NLRP3 inflammasome-related cytokines, containing IL-1ß, IL-18, IL-6, TNF-α. It also down-regulated the expression of mtDNA and ROS, decreased the expression levels of NLRP3 inflammasome activation related proteins, including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18; and increased the expressions of PINK-1, Parkin, beclin-1, LC3-Ⅱ/LC3-Ⅰ, p62 in AngII-induced H9C2 cells. Discussion: Hirudin promoted the process of mitophagy, inhibited the development of inflammation and oxidative stress, and inhibited the activation of the NLRP3 inflammasome and the PINK-1/Parkin pathway. Conclusion: Hirudin has the activity to suppress cardiac hypertrophy may benefit from the inhibition of NLRP3 inflammasome and activating of PINK-1/Parkin related-mitophagy.

19.
J Sep Sci ; 47(1): e2300616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38095533

ABSTRACT

To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Antioxidants/analysis , Drugs, Chinese Herbal/analysis , Artemisia/chemistry , Chlorogenic Acid/analysis , Calibration , Plant Leaves/chemistry
20.
Luminescence ; 39(1): e4610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880919

ABSTRACT

Construction of fluorescent probes for zinc ion (Zn2+ ) and cadmium ion (Cd2+ ) is significant for the safety of humans. However, the discriminating recognition of Zn2+ and Cd2+ by a single probe remains challenging owing to their similar properties. Herein, a novel deoxycholic acid derivative containing 8-hydroxyquinoline fluorophore has been facilely synthesized through click chemistry to form a clamp-like probe. Using its perfect bonding cavity from 1,2,3-triazole and quinoline, this molecule showed favorable solvent-dependent fluorescent responses and distinguished Zn2+ and Cd2+ in different solvents. In ethanol aqueous solution, it displayed good selectivity and ratiometric fluorescence to Zn2+ with 30 nm spectroscopic red-shifts. In acetonitrile aqueous solution, it exhibited good selectivity and ratiometric fluorescence to Cd2+ with 18 nm spectroscopic red-shifts. Moreover, the unique microstructural features of the probe in assembly were used to reflect its recognition processes. Due to its merits of low detection limit and instant response time, the probe was utilized for sensing Zn2+ and Cd2+ in water, beer and urine with high accuracy. Meanwhile, this probe served as a handy tool and was employed to obtain inexpensive test strips for the prompt and semiqualitative analysis of Zn2+ and Cd2+ with the naked eye.


Subject(s)
Fluorescent Dyes , Zinc , Humans , Solvents , Zinc/chemistry , Fluorescent Dyes/chemistry , Cadmium/analysis , Click Chemistry , Oxyquinoline , Water/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...