Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
J Ethnopharmacol ; 332: 118357, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763374

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS: The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS: The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION: The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790639

ABSTRACT

Redox balance plays an important role in testicular homeostasis. While lots of antioxidant molecules have been identified as widely expressed, the understanding of the critical mechanisms for redox management in male germ cells is inadequate. This study identified LanCL2 as a major male germ cell-specific antioxidant gene that is important for testicular homeostasis. Highly expressed in the brain and testis, LanCL2 expression correlates with testicular maturation and brain development. LanCL2 is enriched in spermatocytes and round spermatids of the testis. By examining LanCL2 knockout mice, we found that LanCL2 deletion did not affect postnatal brain development but injured the sperm parameters of adult mice. With histopathological analysis, we noticed that LanCL2 KO caused a pre-maturation and accelerated the self-renewal of spermatogonial stem cells in the early stage of spermatogenesis. In contrast, at the adult stage, LanCL2 KO damaged the acrosomal maturation in spermiogenesis, resulting in spermatogenic defects with a reduced number and motility of spermatozoa. Furthermore, we show that this disruption of testicular homeostasis in the LanCL2 KO testis was due to dysbalanced testicular redox homeostasis. This study demonstrates the critical role of LanCL2 in testicular homeostasis and redox balance.

3.
Int J Biol Macromol ; 268(Pt 2): 131816, 2024 May.
Article in English | MEDLINE | ID: mdl-38677682

ABSTRACT

Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.


Subject(s)
Antioxidants , Paeonia , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Paeonia/chemistry , Ultrasonic Waves , Cell Line , Animals , Oxidative Stress/drug effects , Chemical Fractionation/methods , Lipopolysaccharides/pharmacology
4.
Toxics ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668508

ABSTRACT

Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 µM lead and 2.5, 5, 10 µM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 µM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.

5.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38307355

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Subject(s)
Alpinia , Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/toxicity , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rhizome/metabolism , Ulcer/drug therapy , Luteolin/pharmacology , Histamine/metabolism , Gastric Mucosa , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
6.
J Hazard Mater ; 465: 133156, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38061128

ABSTRACT

Ethephon (ETH) is a common pesticide, and its overuse has resulted in a variety of health problems for humans. However, the existing ETH detection methods are tedious and time-consuming, and real-time ETH identification remains a significant difficulty. To mitigate this concern, a dual-emission ratiometric fluorescent probe Ru@ZrMOF was rationally synthesized for the detection of ETH. In the presence of ETH, the emission peak at 435 nm gradually increased, while the peak at 600 nm remained constant, accompanied by the fluorescence color change from red, pink, blue-violet to blue. The fluorescence intensity ratio (F435/F600) demonstrated two linear relations with the ETH concentration ranges at 3 - 50 µM and 50 - 500 µM, with a lowest detection limit at 1 µM. This was attributed to the formation of Zr-O-P bonds which attenuated the ligand-metal charge transfer (LMCT) process, resulting in the recovery of blue fluorescence of the ligand 2-Aminoterephthalic acid (2-APDC). To validate the practical application of the developed platform, a YOLO v5x-based WeChat applet "96 Speckles" was developed, and a 96-well plate and smartphone-embedded 3D-printed portable toolbox was designed for the real-time intelligent detection of ETH. This smart platform allows for real-time and efficient ETH analysis in various real samples including apples, pears and tomatoes.

7.
J Sci Food Agric ; 104(2): 746-758, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37670420

ABSTRACT

BACKGROUND: Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS: The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION: This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aconitum , Alkaloids , Plants, Medicinal , Aconitum/chemistry , Alkaloids/analysis , Polysaccharides/chemistry , China , Plant Roots/chemistry
8.
Nutrients ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892424

ABSTRACT

Eriodictyol occurs naturally in a variety of fruits and vegetables, and has drawn significant attention for its potential health benefits. This study aims to look into the effects of eriodictyol on acute liver injury (ALI) induced by LPS/D-GalN and elucidate its potential molecular biological mechanisms. A total of 47 targets were predicted for the treatment of ALI with eriodictyol, and the PI3K/AKT signaling pathway played a key role in the anti-ALI processing of this drug. The in vivo experiment showed that eriodictyol can effectively reduce liver function-related biochemical indicators such as ALT, AST, and AKP. Eriodictyol can also up-regulate the levels of SOD and GSH, and inhibit the release of IL-1ß, IL-6, and TNF-α. Additionally, TUNEL staining, immunohistochemistry, and RT-PCR experiments showed that eriodictyol activated the PI3K/AKT pathway and decreased the expression of Bax, caspase3, and caspase8 while increasing the expression of Bcl-2 m-RNA. Finally, molecular docking experiments and molecular dynamics simulations confirmed the stable binding between eriodictyol and PI3K, AKT molecules. This study showed that eriodictyol can activate the PI3K/AKT signaling pathway to alleviate ALI-related oxidative stress and apoptosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Signal Transduction , Liver/metabolism , Oxidative Stress , Apoptosis
9.
ACS Appl Mater Interfaces ; 15(41): 48506-48518, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796018

ABSTRACT

In this study, we designed and fabricated a spermine-responsive triple-emission ratiometric fluorescent probe using dual-emissive carbon nanoparticles and quantum dots, which improve the sensor's accuracy and reduce interfering environmental effects. The probe is advantageous for the proportionate detection of spermine because it has good emission resolution, and the maximum points of the two emission peaks differ by 95 nm. As a proof of concept, cuvettes and a 96-well plate were combined with a smartphone and YOLO series algorithms to accomplish real-time, visual, and high-throughput detection of seafood and meat freshness. In addition, the reaction mechanism was verified by density functional theory and fundamental characterizations. Upon exposure to different amounts of spermine, the intensity of the fluorescent probe changed linearly, and the fluorescent color shifted from yellow-green to red, with a limit of detection of 0.33 µM. To enable visual identification of food-originated spermine, a hydrogel-based visual sensing platform was successfully developed utilizing the triple-emission fluorescent probe. Consequently, spermine could be identified and quantified without complicated equipment.


Subject(s)
Quantum Dots , Spermine , Fluorescent Dyes , Carbon , Limit of Detection
10.
Antioxidants (Basel) ; 12(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37760084

ABSTRACT

Aging is a biological process that leads to the progressive deterioration and loss of physiological functions in the human body and results in an increase in morbidity and mortality, and aging-related disease is a major global problem that poses a serious threat to public health. Polysaccharides have been shown to delay aging by reducing oxidative damage, suppressing inflammatory responses, and modulating intestinal microbiota. Our previous studies have shown that polysaccharide CPP-1 extracted from the root of Codonopsis pilosula possesses noticeable anti-oxidant activity in vitro. Thus, in our study, we tested the anti-aging effect of CPP-1 in naturally aging mice (in vivo). Eighteen C57/BL mice (48-week-old, male) were divided into a control group, high-dose CPP-1 group (20 mg/mL), and low-dose CPP-1 group (10 mg/mL). We discovered that CPP-1 can exert a reparative effect on aging stress in the intestine and liver, including alleviating inflammation and oxidative damage. We revealed that CPP-1 supplementation improved the intestinal microbiota composition and repaired the intestinal barrier in the gut. Furthermore, CPP-1 was proved to modulate lipid metabolism and repair hepatocyte injury in the liver by influencing the enterohepatic axis associated with the intestinal microbiota. Therefore, we concluded that CPP-1 prevents and alleviates oxidative stress and inflammatory responses in the intestine and liver of aging mice by modulating the intestinal microbiota-related gut-liver axis to delay aging.

11.
ACS Appl Mater Interfaces ; 15(34): 40549-40557, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37590043

ABSTRACT

Ruddlesden-Popper oxide La2NiO4+δ (LNO) has a high ionic conductivity and good thermal match with the electrolyte of solid oxide fuel cells (SOFCs); however, LNO suffers from performance decay owing to the La surface segregation under the operation conditions of SOFCs. Herein, we report an in situ electrochemical decoration strategy to improve the electrocatalytic activity and durability of LNO cathodes. We show that the electrochemical polarization leads to in situ construction of the LNO@Pt core-shell structure, significantly suppressing the detrimental effect of La surface segregation on the LNO cathode. The initial peak power density of a single cell with the LNO cathode is 0.71 W cm-2 at 750 °C, increasing to 1.39 W cm-2 by the in situ construction of the LNO@Pt core-shell structure after polarization at 0.5 A cm-2 for 20 h. The LNO@Pt core-shell structure is also highly durable without noticeable performance degradation over the duration of the test for 180 h. The findings shed light on the design and fabrication of highly active and durable LNO-based cathodes for SOFCs.

12.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513370

ABSTRACT

Polygonati Rhizoma is a widely used traditional Chinese medicine (TCM) with complex pre-processing steps. Fermentation is a common method for processing TCM to reduce herb toxicity and enhance their properties and/or produce new effects. Here, in this study, using Bacillus subtilis and Saccharomyces cerevisiae, we aimed to evaluate the potential application of solid fermentation in isolating different functional polysaccharides from Polygonatum cyrtonema Hua. With hot water extraction, ethanol precipitation, DEAE anion exchange chromatography and gel filtration, multiple neutral and acidic polysaccharides were obtained, showing different yields, content, compositions and functional groups after fermentation. Combining in vitro experiments and in vivo aging and immunosuppressed mouse models, we further compared the antioxidant and immunomodulating bioactivities of these polysaccharides and found a prominent role of a natural polysaccharide (BNP) from fermented P. cyrtonema via Bacillus subtilis in regulating intestinal antioxidant defense and immune function, which may be a consequence of the ability of BNP to modulate the homeostasis of gut microbiota. Thus, this work provides evidence for the further development and utilization of P. cyrtonema with fermentation, and reveals the potential values of BNP in the treatment of intestinal disorders.


Subject(s)
Polygonatum , Animals , Mice , Polygonatum/chemistry , Antioxidants/chemistry , Fermentation , Medicine, Chinese Traditional , Polysaccharides/chemistry
13.
Antioxidants (Basel) ; 12(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37507895

ABSTRACT

Dietary oxidized fat contains harmful materials such as hydrogen peroxide and malondialdehyde (MDA). Excessive oxidized fat intake during pregnancy and lactation not only leads to maternal body injury but also damages offspring health. Our previous study demonstrated that vitamin D (VD) had antioxidative capability in sows. This study was conducted to investigate the effect of maternal VD and inulin supplementation in oxidized oil diet on the growth performance and oxidative stress of their offspring. Sixty 5-month-old C57BL/6N female mice were randomly divided into five groups: Control group (basal diet, n = 12), OF group (oxidized-soybean-oil-replaced diet, n = 12), OFV group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD, n = 12), OFI group (oxidized-soybean-oil-replaced diet + 5% inulin, n = 12) and OFVI group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD + 5% inulin, n = 12). Mice were fed with the respective diet during pregnancy and lactation. The offspring were then slaughtered on day 21 of age at weaning. Results showed that a maternal oxidized oil diet impaired body weight and liver weight gain of offspring during lactation compared to the control group, while maternal VD, inulin or VD and inulin mixture supplementation reversed this effect. In addition, the activity of T-AOC in the liver of offspring was lower in the OF group than that in the control group, but could be restored by maternal VD and inulin mixture supplementation. Furthermore, the gene expression of both proinflammatory and anti-inflammatory cytokines, such as Il-6, Tnfα and Il-10, in offspring liver were downregulated by a maternal oxidized oil diet compared with the control group, but they were restored by maternal VD or VD and inulin mixture supplementation. The expressions of Vdr and Cyp27a1 were decreased by a maternal oxidized oil diet compared with the control group, while they could be increased by VD or VD and inulin mixture supplementation. Conclusion: maternal oxidized oil diet intake could impair the growth performance by inducing oxidative stress, but this can be relieved by maternal VD and inulin supplementation.

14.
Int J Pharm ; 642: 123102, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37277087

ABSTRACT

The inflammatory response is the basis of many diseases, such as atherosclerosis and ulcerative colitis. Inhibiting inflammatory response is the key to treating these diseases. Berberine hydrochloride (BBR), a natural product, has shown effective inflammation inhibitory activity. However, its distribution throughout the body results in a variety of serious side effects. Currently, there is a lack of targeted delivery systems for BBR to inflammatory sites. In view of the fact that the recruitment of inflammatory cells by activated vascular endothelial cells is a key step in inflammation development. Here, we design a system that can specifically deliver berberine to activated vascular endothelial cells. Low molecular weight fucoidan (LMWF), which can specifically bind to P-selectin, was coupled to PEGylated liposomes (LMWF-Lip), and BBR is encapsulated into LMWF-Lip (LMWF-Lip/BBR). In vitro, LMWF-Lip significantly increases the uptake by activated human umbilical vein endothelial cells (HUVEC). Injection of LMWF-Lip into the tail vein of rats can effectively accumulate in the swollen part of the foot, where it is internalized by the characteristics of activated vascular endothelial cells. LMWF-Lip/BBR can effectively inhibit the expression of P-selectin in activated vascular endothelial cells, and reduce the degree of foot edema and inflammatory response. In addition, compared with free BBR, the toxicity of BBR in LMWF-Lip/BBR to main organs was significantly reduced. These results suggest that wrapping BBR in LMWF-Lip can improve efficacy and reduce its systemic toxicity as a potential treatment for various diseases caused by inflammatory responses.


Subject(s)
Antineoplastic Agents , Berberine , Rats , Humans , Animals , Berberine/pharmacology , Berberine/therapeutic use , P-Selectin/therapeutic use , Molecular Weight , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Human Umbilical Vein Endothelial Cells , Antineoplastic Agents/therapeutic use
15.
Int J Biol Macromol ; 244: 125088, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37270133

ABSTRACT

Tannic acid (TA) and its extraction were traditionally used for treatment of traumatic bleeding in China, and in the previous study we have demonstrated that TA could accelerate cutaneous wound healing in rats. We attempted to decipher the mechanism of TA in promoting wound healing. In this study, we found that TA could enhance the growth of macrophages and inhibit the release of inflammatory cytokines (IL-1ß, IL-6, TNF-α, IL-8 and IL-10) through inhibition of NF-κB/JNK pathway. TA activated Erk1/2 pathway, leading to increased expressions of growth factors, bFGF and HGF. Scratch study revealed that TA did not directly regulate the migration function of fibroblasts, but could indirectly enhance fibroblasts migration by the supernatant of TA-treated macrophages. Transwell study further proved that TA stimulates macrophages to secrete exosomes enriched in miR-221-3p by activating the p53 signaling pathway, and the exosomes entered into the fibroblast cytoplasm and bound to 3'UTR of target gene CDKN1b which induced decreased expression level of CDKN1b, leading to promoting fibroblast migration. This study provided new insights into how TA accelerates wound healing in the inflammatory and proliferative phases of wound healing.


Subject(s)
Exosomes , MicroRNAs , Animals , Rats , Exosomes/metabolism , Fibroblasts/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Wound Healing/physiology
16.
Aging (Albany NY) ; 15(12): 5887-5916, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37379130

ABSTRACT

Swertia cincta Burkill is widely distributed along the southwestern region of China. It is known as "Dida" in Tibetan and "Qingyedan" in Chinese medicine. It was used in folk medicine to treat hepatitis and other liver diseases. To understand how Swertia cincta Burkill extract (ESC) protects against acute liver failure (ALF), firstly, the active ingredients of ESC were identified using liquid chromatography-mass spectrometry (LC-MS), and further screening. Next, network pharmacology analyses were performed to identify the core targets of ESC against ALF and further determine the potential mechanisms. Finally, in vivo experiments as well as in vitro experiments were conducted for further validation. The results revealed that 72 potential targets of ESC were identified using target prediction. The core targets were ALB, ERBB2, AKT1, MMP9, EGFR, PTPRC, MTOR, ESR1, VEGFA, and HIF1A. Next, KEGG pathway analysis showed that EGFR and PI3K-AKT signaling pathways could have been involved in ESC against ALF. ESC exhibits hepatic protective functions via anti-inflammatory, antioxidant, and anti-apoptotic effects. Therefore, the EGFR-ERK, PI3K-AKT, and NRF2/HO-1 signaling pathways could participate in the therapeutic effects of ESC on ALF.


Subject(s)
Liver Failure, Acute , Swertia , Humans , Swertia/metabolism , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Signal Transduction , Apoptosis , Oxidative Stress , ErbB Receptors/metabolism
17.
Front Immunol ; 14: 1159291, 2023.
Article in English | MEDLINE | ID: mdl-37153605

ABSTRACT

Aging is a biological process of progressive deterioration of physiological functions, which poses a serious threat to individual health and a heavy burden on public health systems. As population aging continues, research into anti-aging drugs that prolong life and improve health is of particular importance. In this study, the polysaccharide from stems and leaves of Chuanminshen violaceum was obtained with water extraction and alcohol precipitation, and then separated and purified with DEAE anion exchange chromatography and gel filtration to obtain CVP-AP-I. We gavaged natural aging mice with CVP-AP-I and performed serum biochemical analysis, histological staining, quantitative real-time PCR (qRT-PCR) and ELISA kit assays to analyze inflammation and oxidative stress-related gene and protein expression in tissues, and 16SrRNA to analyze intestinal flora. We found that CVP-AP-I significantly improved oxidative stress and inflammatory responses of the intestine and liver, restored the intestinal immune barrier, and balanced the dysbiosis of intestinal flora. In addition, we revealed the potential mechanism behind CVP-AP-I to improve intestinal and liver function by regulating intestinal flora balance and repairing the intestinal immune barrier to regulate the intestinal-liver axis. Our results indicated that C. violaceum polysaccharides possessed favorable antioxidant, anti-inflammatory and potentially anti-aging effects in vivo.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Oxidative Stress , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aging , Plant Components, Aerial
18.
Int J Biol Macromol ; 242(Pt 1): 124689, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148926

ABSTRACT

The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.


Subject(s)
Angelica sinensis , Colitis , Gastrointestinal Microbiome , Mice , Animals , Swine , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Angelica sinensis/metabolism , Toll-Like Receptor 4/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Polysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal
19.
Bioorg Chem ; 135: 106501, 2023 06.
Article in English | MEDLINE | ID: mdl-37015152

ABSTRACT

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Subject(s)
Alkaloids , Breast Neoplasms , Carcinoma , Diterpenes , Dogs , Animals , Female , Humans , Aconitine/pharmacology , Aconitine/chemistry , Breast Neoplasms/drug therapy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
20.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36912655

ABSTRACT

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...