Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38258242

ABSTRACT

This work investigated the effect of Fe/Mn ratio on the microstructure and mechanical properties of non-equimolar Fe80-xMnxCo10Cr10 (x = 30% and 50%) high-entropy alloys (HEAs) fabricated by laser powder bed fusion (LPBF) additive manufacturing. Process optimization was conducted to achieve fully dense Fe30Mn50Co10Cr10 and Fe50Mn30Co10Cr10 HEAs using a volumetric energy density of 105.82 J·mm-3. The LPBF-printed Fe30Mn50Co10Cr10 HEA exhibited a single face-centered cubic (FCC) phase, while the Fe50Mn30Co10Cr10 HEA featured a hexagonal close-packed (HCP) phase within the FCC matrix. Notably, the fraction of HCP phase in the Fe50Mn30Co10Cr10 HEAs increased from 0.94 to 28.10%, with the deformation strain ranging from 0 to 20%. The single-phase Fe30Mn50Co10Cr10 HEA demonstrated a remarkable combination of high yield strength (580.65 MPa) and elongation (32.5%), which surpassed those achieved in the FeMnCoCr HEA system. Comparatively, the dual-phase Fe50Mn30Co10Cr10 HEA exhibited inferior yield strength (487.60 MPa) and elongation (22.3%). However, it displayed superior ultimate tensile strength (744.90 MPa) compared to that in the Fe30Mn50Co10Cr10 HEA (687.70 MPa). The presence of FCC/HCP interfaces obtained in the Fe50Mn30Co10Cr10 HEA resulted in stress concentration and crack expansion, thereby leading to reduced ductility but enhanced resistance against grain slip deformation. Consequently, these interfaces facilitated an earlier attainment of yield limit point and contributed to increased ultimate tensile strength in the Fe50Mn30Co10Cr10 HEA. These findings provide valuable insights into the microstructure evolution and mechanical behavior of LPBF-printed metastable FeMnCoCr HEAs.

2.
Adv Healthc Mater ; 12(29): e2301485, 2023 11.
Article in English | MEDLINE | ID: mdl-37463681

ABSTRACT

Hypoxia is an important feature, which can upregulate the hypoxia-inducible factor-1α (HIF-1α) expression and promote the activation of hepatic stellate cells (HSCs), leading to liver fibrosis. Currently, effective treatment for liver fibrosis is extremely lacking. Herein, a safe and effective method is established to downregulate the expression of HIF-1α in HSCs via targeted delivery of VA-PEG-modified CNs-based nanosheets-encapsulated (VA-PEG-CN@GQDs) HIF-1α small interfering RNA (HIF-1α-siRNA). Due to the presence of lipase in the liver, the reversible release of siRNA can be promoted to complete the transfection process. Simultaneously, VA-PEG-CN@GQD nanosheets enable trigger the water splitting process to produce O2 under near-infrared (NIR) irradiation, thereby improving the hypoxic environment of the liver fibrosis site and maximizing the downregulation of HIF-1α expression to improve the therapeutic effect, as demonstrated in liver fibrosis mice. Such combination therapy can inhibit the activation of HSCs via HIF-1α-mediated TGF-ß1/Smad pathway, achieving outstanding therapeutic effects in liver fibrosis mice. In conclusion, this study proposes a novel strategy for the treatment of liver fibrosis by regulating the hypoxic environment and the expression of HIF-1α at lesion site.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , RNA, Small Interfering/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Cirrhosis/therapy , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...