Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 260: 127555, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32673870

ABSTRACT

As (III) is widely distributed in groundwater which is relatively harder to be removed comparing to As (V). Co-grinding Ca(OH)2 with Al(OH)3 was conducted to manufacture katoite (Ca3Al2(OH)12) for the complete removal of As(III) (concentration below drinking water standard of WHO (<10 ppb)) during one-step agitation operation. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG), and X-ray photoelectron spectroscopy (XPS) were applied for the illustration of adsorption mechanism. Katoite could intercalate As(III) into the layered space forming arsenite pillared Ca-Al layered double hydroxide (LDH). The coexisting anions such as Cl-, SO42-, and NO3- had minor effects on As (III) removal performance using katoite. Techno-economic analysis demonstrated the feasibility of large-scale katoite production and its practical application for As(III) polluted groundwater purification, especially in the undeveloped areas where groundwater was used as irrigation and drinking water.


Subject(s)
Arsenites/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Groundwater/chemistry , Hydrogen-Ion Concentration , Hydroxides/chemistry , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Water/analysis , Water Pollutants, Chemical/analysis , X-Ray Diffraction
2.
Biomech Model Mechanobiol ; 17(2): 559-576, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29139051

ABSTRACT

The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.


Subject(s)
Finite Element Analysis , Foot/physiology , Models, Biological , Walking/physiology , Adult , Biomechanical Phenomena , Computer Simulation , Humans , Imaging, Three-Dimensional , Male , Pressure , Reproducibility of Results , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...