Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 348: 119315, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37844401

ABSTRACT

The effectiveness of cement-based solidification for remediating heavy metal-contaminated soil diminishes at high levels of contamination. To overcome this limitation, the potential of a biochar-cement composite curing agent to enhance the properties of Pb 2+ contaminated soil was investigated in this study. The permeability, unconfined compressive strength (UCS), and leaching characteristics of the biochar-cement composite material were assessed under varying biochar contents. The results revealed that the addition of 1-5 wt% biochar in cement significantly improved the UCS of the solidified soil. However, excessive biochar contents had a detrimental effect on the strength of samples. Additionally, the incorporation of 3.0% biochar reduced the hydraulic conductivity and porosity to 7.75 × 10-9 cm/s and 43.12%, respectively. Moreover, the biochar-cement composite material exhibited remarkable efficiency in treating highly concentrated Pb2+ contaminated soil, with leaching concentration decreasing significantly with increasing biochar content, falling below the Chinese hazardous waste identification standard. Overall, the utilization of a biochar-cement composite curing agent in the solidification of heavy metal-contaminated soil could be considered a promising subgrade filler technique.


Subject(s)
Metals, Heavy , Soil Pollutants , Lead , Construction Materials , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil
2.
Materials (Basel) ; 16(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049102

ABSTRACT

Biochar (BC), a byproduct of agricultural waste pyrolysis, shows potential as a sustainable substitute material for ordinary silicate cement (OPC) in concrete production, providing opportunities for environmental sustainability and resource conservation in the construction industry. However, the optimal biochar dosage and fineness for enhancing concrete performance are still unclear. This study investigated the impact of these two factors on the mechanical and durability properties of biochar concrete. Compressive and flexural strength, carbonation resistance, and chloride ion penetration resistance were evaluated by varying biochar dosages (0%, 1%, 3%, 5%, 10%) and fineness dimensions (44.70, 73.28, 750, 1020 µm), with the 0% dosage serving as the control group (CK). The results showed that the addition of 1-3 wt% of biochar could effectively reduce the rapid carbonation depth and chloride diffusion coefficient of concrete. The compressive and flexural strength of BC concrete initially increased and then decreased with the increase in biocarbon content, BC with a fineness of 73.28 µm having the most significant effect on the mechanical strength of concrete. At the dosage of 3 wt%, BC was found to promote the hydration degree of cement, improving the formation of cement hydration products. These findings provide valuable insights for the development of sustainable and high-performance cement-based materials with the appropriate use of biochar as an additive.

SELECTION OF CITATIONS
SEARCH DETAIL
...