Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Lancet Oncol ; 25(7): 922-932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936379

ABSTRACT

BACKGROUND: Neuroblastoma is the most common extracranial solid tumour in children. Relapsed or refractory neuroblastoma is associated with a poor outcome. We assessed the combination of irinotecan-temozolomide and dasatinib-rapamycin (RIST) in patients with relapsed or refractory neuroblastoma. METHODS: The multicentre, open-label, randomised, controlled, phase 2, RIST-rNB-2011 trial recruited from 40 paediatric oncology centres in Germany and Austria. Patients aged 1-25 years with high-risk relapsed (defined as recurrence of all stage IV and MYCN amplification stages, after response to treatment) or refractory (progressive disease during primary treatment) neuroblastoma, with Lansky and Karnofsky performance status at least 50%, were assigned (1:1) to RIST (RIST group) or irinotecan-temozolomide (control group) by block randomisation, stratified by MYCN status. We compared RIST (oral rapamycin [loading 3 mg/m2 on day 1, maintenance 1 mg/m2 on days 2-4] and oral dasatinib [2 mg/kg per day] for 4 days with 3 days off, followed by intravenous irinotecan [50 mg/m2 per day] and oral temozolomide [150 mg/m2 per day] for 5 days with 2 days off; one course each of rapamycin-dasatinib and irinotecan-temozolomide for four cycles over 8 weeks, then two courses of rapamycin-dasatinib followed by one course of irinotecan-temozolomide for 12 weeks) with irinotecan-temozolomide alone (with identical dosing as experimental group). The primary endpoint of progression-free survival was analysed in all eligible patients who received at least one course of therapy. The safety population consisted of all patients who received at least one course of therapy and had at least one post-baseline safety assessment. This trial is registered at ClinicalTrials.gov, NCT01467986, and is closed to accrual. FINDINGS: Between Aug 26, 2013, and Sept 21, 2020, 129 patients were randomly assigned to the RIST group (n=63) or control group (n=66). Median age was 5·4 years (IQR 3·7-8·1). 124 patients (78 [63%] male and 46 [37%] female) were included in the efficacy analysis. At a median follow-up of 72 months (IQR 31-88), the median progression-free survival was 11 months (95% CI 7-17) in the RIST group and 5 months (2-8) in the control group (hazard ratio 0·62, one-sided 90% CI 0·81; p=0·019). Median progression-free survival in patients with amplified MYCN (n=48) was 6 months (95% CI 4-24) in the RIST group versus 2 months (2-5) in the control group (HR 0·45 [95% CI 0·24-0·84], p=0·012); median progression-free survival in patients without amplified MYCN (n=76) was 14 months (95% CI 9-7) in the RIST group versus 8 months (4-15) in the control group (HR 0·84 [95% CI 0·51-1·38], p=0·49). The most common grade 3 or worse adverse events were neutropenia (54 [81%] of 67 patients given RIST vs 49 [82%] of 60 patients given control), thrombocytopenia (45 [67%] vs 41 [68%]), and anaemia (39 [58%] vs 38 [63%]). Nine serious treatment-related adverse events were reported (five patients given control and four patients given RIST). There were no treatment-related deaths in the control group and one in the RIST group (multiorgan failure). INTERPRETATION: RIST-rNB-2011 demonstrated that targeting of MYCN-amplified relapsed or refractory neuroblastoma with a pathway-directed metronomic combination of a multkinase inhibitor and an mTOR inhibitor can improve progression-free survival and overall survival. This exclusive efficacy in MYCN-amplified, relapsed neuroblastoma warrants further investigation in the first-line setting. FUNDING: Deutsche Krebshilfe.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Dasatinib , Irinotecan , Neoplasm Recurrence, Local , Neuroblastoma , Sirolimus , Temozolomide , Humans , Temozolomide/administration & dosage , Temozolomide/therapeutic use , Irinotecan/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Male , Female , Neuroblastoma/drug therapy , Neuroblastoma/mortality , Neuroblastoma/pathology , Neuroblastoma/genetics , Child, Preschool , Child , Dasatinib/administration & dosage , Dasatinib/therapeutic use , Dasatinib/adverse effects , Adolescent , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Infant , Adult , Sirolimus/administration & dosage , Sirolimus/therapeutic use , Young Adult , Germany , Drug Resistance, Neoplasm , Progression-Free Survival
2.
J Infect Dis ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591239

ABSTRACT

BACKGROUND: Borna disease virus 1 (BoDV-1) causes rare but severe zoonotic infections in humans, presenting as severe encephalitis. The case-fatality risk is very high and no effective countermeasures have been established so far. An immunopathology is presumed, while data on immune responses in humans are limited. Evidence of a role of the complement system in various neurological disorders and central nervous viral infections is increasing and specific inhibitors are available as therapeutic options. METHODS: In this study, we investigated factors of the complement system in the cerebrospinal fluid (CSF) of patients with BoDV-1 infections (n = 17) in comparison to non-inflammatory control CSF samples (n = 11), using a bead-based multiplex assay. In addition, immunohistochemistry was performed using post-mortem brain tissue samples. RESULTS: We found an intrathecal elevation of complement factors of all complement pathways and an active cascade during human BoDV-1 infections. The increase of certain complement factors such as C1q was persistent and C3 complement deposits were detected in post-mortem brain sections. Intrathecal complement levels were negatively correlated with survival. CONCLUSION: Further investigations are warranted to clarify, whether targeting the complement cascade by specific inhibitors might be beneficial for patients suffering from severe BoDV-1 encephalitis.

3.
Neuro Oncol ; 26(5): 922-932, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38243410

ABSTRACT

BACKGROUND: The aim of this clinical trial was to compare Fluorescein-stained intraoperative confocal laser endomicroscopy (CLE) of intracranial lesions and evaluation by a neuropathologist with routine intraoperative frozen section (FS) assessment by neuropathology. METHODS: In this phase II noninferiority, prospective, multicenter, nonrandomized, off-label clinical trial (EudraCT: 2019-004512-58), patients above the age of 18 years with any intracranial lesion scheduled for elective resection were included. The diagnostic accuracies of both CLE and FS referenced with the final histopathological diagnosis were statistically compared in a noninferiority analysis, representing the primary endpoint. Secondary endpoints included the safety of the technique and time expedited for CLE and FS. RESULTS: A total of 210 patients were included by 3 participating sites between November 2020 and June 2022. Most common entities were high-grade gliomas (37.9%), metastases (24.1%), and meningiomas (22.7%). A total of 6 serious adverse events in 4 (2%) patients were recorded. For the primary endpoint, the diagnostic accuracy for CLE was inferior with 0.87 versus 0.91 for FS, resulting in a difference of 0.04 (95% confidence interval -0.10; 0.02; P = .367). The median time expedited until intraoperative diagnosis was 3 minutes for CLE and 27 minutes for FS, with a mean difference of 27.5 minutes (standard deviation 14.5; P < .001). CONCLUSIONS: CLE allowed for a safe and time-effective intraoperative histological diagnosis with a diagnostic accuracy of 87% across all intracranial entities included. The technique achieved histological assessments in real time with a 10-fold reduction of processing time compared to FS, which may invariably impact surgical strategy on the fly.


Subject(s)
Brain Neoplasms , Fluorescein , Frozen Sections , Microscopy, Confocal , Humans , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Male , Microscopy, Confocal/methods , Female , Middle Aged , Prospective Studies , Frozen Sections/methods , Aged , Adult , Follow-Up Studies , Young Adult , Prognosis , Aged, 80 and over
4.
Cells ; 12(14)2023 07 14.
Article in English | MEDLINE | ID: mdl-37508520

ABSTRACT

Conventional 2D cultures are commonly used in cancer research though they come with limitations such as the lack of microenvironment or reduced cell heterogeneity. In this study, we investigated in what respect a scaffold-based (Matrigel™) 3D culture technique can ameliorate the limitations of 2D cultures. NGS-based bulk and single-cell sequencing of matched pairs of 2D and 3D models showed an altered transcription of key immune regulatory genes in around 36% of 3D models, indicating the reoccurrence of an immune suppressive phenotype. Changes included the presentation of different HLA surface molecules as well as cellular stressors. We also investigated the 3D tumor organoids in a co-culture setting with tumor-infiltrating lymphocytes (TILs). Of note, lymphocyte-mediated cell killing appeared less effective in clearing 3D models than their 2D counterparts. IFN-γ release, as well as live cell staining and proliferation analysis, pointed toward an elevated resistance of 3D models. In conclusion, we found that the scaffold-based (Matrigel™) 3D culture technique affects the transcriptional profile in a subset of GBM models. Thus, these models allow for depicting clinically relevant aspects of tumor-immune interaction, with the potential to explore immunotherapeutic approaches in an easily accessible in vitro system.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Coculture Techniques , Immunosuppressive Agents/therapeutic use , Phenotype , Tumor Microenvironment
5.
Clin Neuropathol ; 42(3): 112-121, 2023.
Article in English | MEDLINE | ID: mdl-36999511

ABSTRACT

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Subject(s)
Biomarkers, Tumor , Chromosome Deletion , Genetic Testing , Histones , Mutation , Oncogene Proteins, Fusion , Promoter Regions, Genetic , Telomerase , Child , Humans , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Germany , Histones/genetics , Membrane Proteins/genetics , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics
6.
Viruses ; 15(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36680228

ABSTRACT

More than 40 human cases of severe encephalitis caused by Borna disease virus 1 (BoDV-1) have been reported to German health authorities. In an endemic region in southern Germany, we conducted the seroepidemiological BoSOT study ("BoDV-1 after solid-organ transplantation") to assess whether there are undetected oligo- or asymptomatic courses of infection. A total of 216 healthy blood donors and 280 outpatients after solid organ transplantation were screened by a recombinant BoDV-1 ELISA followed by an indirect immunofluorescence assay (iIFA) as confirmatory test. For comparison, 288 serum and 258 cerebrospinal fluid (CSF) samples with a request for tick-borne encephalitis (TBE) diagnostics were analyzed for BoDV-1 infections. ELISA screening reactivity rates ranged from 3.5% to 18.6% depending on the cohort and the used ELISA antigen, but only one sample of a patient from the cohort with requested TBE diagnostics was confirmed to be positive for anti-BoDV-1-IgG by iIFA. In addition, the corresponding CSF sample of this patient with a three-week history of severe neurological disease tested positive for BoDV-1 RNA. Due to the iIFA results, all other results were interpreted as false-reactive in the ELISA screening. By linear serological epitope mapping, cross-reactions with human and bacterial proteins were identified as possible underlying mechanism for the false-reactive ELISA screening results. In conclusion, no oligo- or asymptomatic infections were detected in the studied cohorts. Serological tests based on a single recombinant BoDV-1 antigen should be interpreted with caution, and an iIFA should always be performed in addition.


Subject(s)
Borna Disease , Borna disease virus , Encephalitis, Tick-Borne , Encephalitis, Viral , Encephalitis , Flavivirus Infections , Animals , Humans , Borna disease virus/genetics , Borna Disease/epidemiology , Borna Disease/genetics , Encephalitis, Viral/epidemiology , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/epidemiology , Germany/epidemiology
7.
Cell Rep Med ; 3(1): 100499, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35106511

ABSTRACT

Borna disease virus 1 (BoDV-1) causes rare but often fatal encephalitis in humans. Late diagnosis prohibits an experimental therapeutic approach. Here, we report a recent case of fatal BoDV-1 infection diagnosed on day 12 after hospitalization by detection of BoDV-1 RNA in the cerebrospinal fluid. In a retrospective analysis, we detect BoDV-1 RNA 1 day after hospital admission when the cell count in the cerebrospinal fluid is still normal. We develop a new ELISA using recombinant BoDV-1 nucleoprotein, phosphoprotein, and accessory protein X to detect seroconversion on day 12. Antibody responses are also shown in seven previously confirmed cases. The individual BoDV-1 antibody profiles show variability, but the usage of three different BoDV-1 antigens results in a more sensitive diagnostic tool. Our findings demonstrate that early detection of BoDV-1 RNA in cerebrospinal fluid and the presence of antibodies against at least two different viral antigens contribute to BoDV-1 diagnosis. Physicians in endemic regions should consider BoDV-1 infection in cases of unclear encephalopathy and initiate appropriate diagnostics at an early stage.


Subject(s)
Antibodies/immunology , Borna Disease/diagnosis , Borna Disease/immunology , Borna disease virus/physiology , Nucleoproteins/immunology , Phosphoproteins/immunology , Viral Proteins/immunology , Aged , Animals , Chlorocebus aethiops , Humans , Recombinant Proteins/immunology , Vero Cells
8.
Neurosurg Focus ; 50(1): E19, 2021 01.
Article in English | MEDLINE | ID: mdl-33386020

ABSTRACT

OBJECTIVE: Confocal laser endomicroscopy (CLE) is an established tool in basic research for tissue imaging at the level of microstructures. Miniaturization and refinement of the technology have made this modality available for operative imaging with a handheld device. Sufficient image contrast is provided by the preoperative application of fluorescein sodium. The authors report their first experiences in a clinical case series using the new confocal laser endomicroscope. METHODS: Handling, operative workflow, and visualization of the CLE were critically evaluated in 12 cases of different CNS tumors. Three different imaging positions in relation to the tumor were chosen: the tumor border (I), tumor center (II), and perilesional zone (III). Respective diagnostic sampling with H & E staining and matching intraoperative neuronavigation and microscope images are provided. RESULTS: CLE was found to be beneficial in terms of high-quality visualization of fine structures and for displaying hidden anatomical details. The handling of the device was good, and the workflow was easy. CONCLUSIONS: Handling ergonomics and image acquisition are intuitive. The endomicroscope allows excellent additional visualization of microstructures in the surgical field with a minimally invasive technique and could improve safety and clinical outcomes. The new confocal laser endomicroscope is an advanced tool with the potential to change intracranial tumor surgery. Imaging of these microstructures is novel, and research with comparative validation with traditional neuropathological assessments is needed.


Subject(s)
Brain Neoplasms , Neurosurgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Fluorescein , Humans , Lasers , Microscopy, Confocal
9.
Acta Neuropathol Commun ; 8(1): 124, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32758285

ABSTRACT

Recent updates in the classification of central nervous system (CNS) tumors have increased the need for molecular testing. Assessment of multiple alterations in parallel, complex combinations of gene sequence and chromosomal changes, as well as therapy prediction by identification of actionable mutations are the major challenges. We here report on a customized next generation sequencing (NGS)-based DNA panel assay that combines diagnostic and predictive testing and -as a comprehensive approach- allows for simultaneous single nucleotide variant (SNP) / small insertion/deletion (InDel), copy number variation (CNV) and loss of heterozygosity (LOH) detection. We analyzed formalin-fixed and paraffin-embedded (FFPE) DNA from a total of 104 patients with CNS tumors. After amplicon capture-based library preparation, sequencing was performed on the relatively cost-efficient Illiumina MiniSeq platform and evaluated with freely available bioinformatical tools. 57 genes for exonic SNP/InDel calling (19 of those in intronic regions for CNV analysis), 3 chromosomal arms and 4 entire chromosomes for CNV and LOH analysis were covered. Results were extensively validated. Our approach yielded high accuracy, sensitivity and specificity. It led to refined diagnoses in a relevant number of analyzed cases, reliably enabled complex subclassifications (e.g. for medulloblastomas) and identified actionable targets for clinical use. Thus, our single-platform approach is an efficient and powerful tool to comprehensively support molecular testing in neurooncology. Future functionality is guaranteed as novel upcoming biomarkers can be easily incorporated in a modular panel design.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Molecular Targeted Therapy/methods , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Humans , Male , Medical Oncology/methods , Neurology/methods , Precision Medicine/methods , Sequence Analysis, DNA
10.
Clin Neuropathol ; 39(5): 203-211, 2020.
Article in English | MEDLINE | ID: mdl-32352373

ABSTRACT

We here report on the first neuropathological round robin trials initiated by the Quality Assurance Initiative Pathology (QuIP) in Germany in the years 2018 and 2019. Testing services as external laboratory controls were offered for IDH1-R132H immunohistochemistry in 2018 followed by a molecular trial for IDH1 and IDH2 mutations in 2019 including the rare mutational variants. Also in 2019, a trial on MGMT promoter methylation testing was offered. On a national scale, trial offers were well received with around 40 participating institutions. The international announcement of the molecular IDH1/IDH2 mutational trial achieved only moderate European outspread. Success rates in all three trials were excellent (IDH1-R132H immunohistochemistry 2018: 94%, 18 out of 20 possible points required; IDH1/IDH2 mutational status 2019: 100%, 19 out of 20 possible points required; MGMT promoter methylation 2019: 94%, 19 out of 20 possible points required) indicating that quality standards are high in the broad majority of the institutions. Trial participation also involved filling in a questionnaire asking for background information on local testing procedures. We here present a first assessment of the information collected providing unique insights in the landscape of molecular testing in neuropathology. Derived from this information we identify future challenges and provide an outlook on the development of quality assurance in the field of neuropathology.


Subject(s)
Biomarkers, Tumor/analysis , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Isocitrate Dehydrogenase/genetics , Neuropathology/standards , Quality Assurance, Health Care , Tumor Suppressor Proteins/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Germany , Glioma/genetics , Glioma/pathology , Humans , Mutation , Pathology, Clinical/standards
11.
Lancet Infect Dis ; 20(4): 467-477, 2020 04.
Article in English | MEDLINE | ID: mdl-31924550

ABSTRACT

BACKGROUND: In 2018-19, Borna disease virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported in five human patients with severe to fatal encephalitis in Germany. However, information on case frequencies, clinical courses, and detailed epidemiological analyses are still lacking. We report the occurrence of BoDV-1-associated encephalitis in cases submitted to the Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany, and provide a detailed description of newly identified cases of BoDV-1-induced encephalitis. METHODS: All brain tissues from 56 encephalitis cases from Bavaria, Germany, of putative viral origin (1999-2019), which had been submitted for virological testing upon request of the attending clinician and stored for stepwise diagnostic procedure, were systematically screened for BoDV-1 RNA. Two additional BoDV-1-positive cases were contributed by other diagnostic centres. Positive results were confirmed by deep sequencing, antigen detection, and determination of BoDV-1-reactive antibodies in serum and cerebrospinal fluid. Clinical and epidemiological data from infected patients were collected and analysed. FINDINGS: BoDV-1 RNA and bornavirus-reactive antibodies were detected in eight newly analysed encephalitis cases and the first human BoDV-1 isolate was obtained from an unequivocally confirmed human BoDV-1 infection from the endemic area. Six of the eight BoDV-1-positive patients had no record of immunosuppression before the onset of fatal disease, whereas two were immunocompromised after solid organ transplantation. Typical initial symptoms were headache, fever, and confusion, followed by various neurological signs, deep coma, and severe brainstem involvement. Seven of nine patients with fatal encephalitis of unclear cause were BoDV-1 positive within one diagnostic centre. BoDV-1 sequence information and epidemiological analyses indicated independent spillover transmissions most likely from the local wild animal reservoir. INTERPRETATION: BoDV-1 infection has to be considered as a potentially lethal zoonosis in endemic regions with reported spillover infections in horses and sheep. BoDV-1 infection can result in fatal encephalitis in immunocompromised and apparently healthy people. Consequently, all severe encephalitis cases of unclear cause should be tested for bornaviruses especially in endemic regions. FUNDING: German Federal Ministry of Education and Research.


Subject(s)
Borna Disease/complications , Borna Disease/epidemiology , Borna disease virus/genetics , Encephalitis/etiology , Encephalitis/pathology , Zoonoses , Animals , Antibodies, Viral/blood , Borna Disease/virology , Encephalitis/mortality , Germany/epidemiology , Horses/genetics , Humans , RNA, Viral/genetics , Sheep/genetics , Virus Replication
12.
Front Neurosci ; 13: 1092, 2019.
Article in English | MEDLINE | ID: mdl-31680827

ABSTRACT

Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 × 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 × 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method.

13.
Acta Neuropathol ; 138(4): 653-665, 2019 10.
Article in English | MEDLINE | ID: mdl-31346692

ABSTRACT

After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the first systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest-Degen inclusion bodies. While the composition of histopathological changes was constant, the inflammatory distribution pattern varied interindividually, affecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more diffuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as differential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease.


Subject(s)
Borna Disease/pathology , Borna disease virus , Brain/pathology , Encephalomyelitis/pathology , Adolescent , Aged , Female , Humans , Middle Aged , Retrospective Studies , Young Adult
14.
Muscle Nerve ; 55(1): 101-108, 2017 01.
Article in English | MEDLINE | ID: mdl-27104792

ABSTRACT

INTRODUCTION: Functional immobility of the diaphragm by mechanical ventilation impairs neuromuscular transmission and may result in ventilator-induced diaphragmatic dysfunction. We compared 3 diaphragmatic immobilization models with respect to their effects on expression of adult and fetal acetylcholine receptors (AChRs), muscle-specific receptor tyrosine kinase (MuSK), and muscle fiber morphology. METHODS: Diaphragms of rats were immobilized by either: (1) phrenicotomy; (2) presynaptic tetrodotoxin nerve blockade; or (3) postsynaptic polyethylene orthosis. AChR subtypes and MuSK were quantified by Western blot and immunohistochemistry. Muscle fiber morphology was evaluated by hematoxylin-eosin staining. RESULTS: Adult AChRs remained unchanged, whereas fetal AChRs and MuSK were upregulated in all models. Denervation induced the strongest changes in muscle morphology. CONCLUSIONS: Each diaphragm immobilization model led to severe morphologic and postsynaptic receptor changes. Postsynaptic polyethylene orthosis, a new model with an intact and functioning motor unit, best reflects the clinical picture of a functionally immobilized diaphragm. Muscle Nerve 55: 101-108, 2017.


Subject(s)
Denervation , Diaphragm/physiology , Gene Expression Regulation, Developmental/physiology , Neuromuscular Junction/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/metabolism , Animals , Body Weight , Embryo, Mammalian , In Vitro Techniques , Male , Neuromuscular Junction/embryology , Protein Transport , Rats , Rats, Sprague-Dawley , Tetrodotoxin/pharmacology
15.
PLoS One ; 10(5): e0127681, 2015.
Article in English | MEDLINE | ID: mdl-25993409

ABSTRACT

GABAergic neurons are the primary inhibitory cell type in the mature brain and their dysfunction is associated with important neurological conditions like schizophrenia and anxiety. We aimed to discover the underlying mechanisms for dorsal/ventral midbrain GABAergic neurogenesis. Previous work by us and others has provided crucial insights into the key function of Mgn and Mash1 genes in determining GABAergic neurotransmitter fate. Induction of dorsal midbrain GABAergic neurons does not take place at any time during development in either of the single mutant mice. However, GABAergic neurons in the ventral midbrain remained unchanged. Thus, the similarities in MB-GABAergic phenotype observed in the Mgn and Mash1 single mutants suggest the existence of other factors that take over the function of MGN and MASH1 in the ventral midbrain or the existence of different molecular mechanisms. We show that this process essentially depends on heterodimers and homodimers formed by MGN and MASH1 and deciphered the in vivo relevance of the interaction by phenotypic analysis of Mgn/Mash1 double knockout and compound mice. Furthermore, the combination of gain- and loss-of-function experiments in the developing midbrain showed co-operative roles for Mgn and Mash1 genes in determining GABAergic identity. Transcription factors belonging to the Enhancer-of-split-related and proneural families have long been believed to counterpart each other's function. This work uncovers a synergistic cooperation between these two families, and provides a novel paradigm for how these two families cooperate for the acquisition of MB-GABAergic neuronal identity. Understanding their molecular mechanisms is essential for cell therapy strategies to amend GABAergic deficits.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , GABAergic Neurons/metabolism , Mesencephalon/cytology , Mesencephalon/metabolism , Neurogenesis , Repressor Proteins/metabolism , Animals , GABAergic Neurons/cytology , Immunoprecipitation , Mice , Mutation , Neurotransmitter Agents/metabolism , Protein Binding , Protein Multimerization , Saccharomyces cerevisiae/metabolism , Two-Hybrid System Techniques
17.
J Neurooncol ; 102(2): 323-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20640479

ABSTRACT

We describe here a rare case of the transformation of a supratentorial melanocytoma and diffuse melanocytosis into a primary malignant, CNS melanoma. A 71-year-old woman was admitted after suffering from bulbar speech and dysfunction of fine motor skills for three years. Cerebral imaging revealed an inhomogeneous tumor mass in the right frontal lobe. After craniotomy and opening of the dura, a partially black brain surface was exposed. The solid tumor mass was completely resected. Histopathological workup of the surgical specimen (solid tumor) revealed a melanocytoma with transformation into a malignant melanoma. Three months after surgery, an MR scan was carried out, revealing local tumor recurrence and intracranial spreading. At this time the patient agreed to undergo whole brain radiation therapy, which was carried out. At this date patient has survived 18 months since primary diagnosis with progressive neurological symptoms.


Subject(s)
Brain Neoplasms/pathology , Craniotomy , Melanoma/pathology , Nevus, Pigmented/pathology , Aged , Brain Neoplasms/surgery , Female , Humans , Magnetic Resonance Imaging , Melanoma/surgery , Nevus, Pigmented/surgery
18.
Proc Natl Acad Sci U S A ; 107(43): 18493-8, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20937862

ABSTRACT

Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.


Subject(s)
Adrenal Gland Neoplasms/genetics , Multiple Endocrine Neoplasia/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/pathology , Adrenal Medulla/metabolism , Adrenal Medulla/pathology , Animals , Base Sequence , Biomarkers, Tumor/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , DNA Primers/genetics , Disease Models, Animal , Gene Expression Profiling , Homeodomain Proteins/genetics , Humans , Hyperplasia , Multiple Endocrine Neoplasia/pathology , Neural Cell Adhesion Molecule L1/genetics , PC12 Cells , Paraganglioma/genetics , Pheochromocytoma/pathology , Rats , Rats, Mutant Strains , Species Specificity
19.
Invest Radiol ; 45(12): 755-68, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20829706

ABSTRACT

OBJECTIVE: Because of the heterogeneous nature of glioma, biopsies performed should be targeted at the most anaplastic region. Several functional magnetic resonance imaging (MRI) or positron emission tomography (PET) techniques have been proposed for identifying the most anaplastic tumor area. However, it is unclear whether the recommended biopsy targets based on these various functional imaging modalities correspond with each other. Thus, the purpose was to evaluate whether they identify similar target areas. MATERIALS AND METHODS: A total of 61 patients with suspected glioma were assessed within 2.3 +/- 3.5 days by MRI, 18F-fluorothymidine-, and 18F-fluorodeoxyglucose-PET. Thirty-five patients underwent gross total resection and 26 were stereotactically biopsied. MRI was performed on a 1.5 Tesla broadband transmit/receive system, using a double-resonant birdcage coil. The MRI protocol comprised of sodium (23Na)-MRI (3D-radial projection imaging), proton spectroscopic imaging (1H-MRSI, point-resolved spectroscopy), arterial spin-labeling (ASL) perfusion MRI, dynamic contrast-enhanced (DCE) MRI, and dynamic-susceptibility-weighted (DSC) perfusion MRI after a single dose each of gadobenate dimeglumine. Also, apparent diffusion coefficient (ADC) maps were processed from diffusion tensor images. Image analysis comprised a detailed semiquantitative region of interest analysis of the different parameter values as well as visual identification of the most conspicuous tumor areas on parameter maps, for example, areas with maximum tumor perfusion, highest metabolite ratios of choline-containing compounds/N-acetyl-aspartate, or lowest ADC values within tumor tissue. Colocalization of these areas was then assessed. RESULTS: Regarding tumor vascularity-related parameters and tumor proliferation-related parameters, the higher the glioma grade the higher were the respective parameters in semiquantitative analysis. ADC values decreased with glioma grade. In the whole study population comprising low- (N = 15) and high-grade gliomas (N = 42), except for 23Na-MRI, there was good (>50%) or perfect (100%) agreement of the tumor areas with highest values on parameter images in the majority of cases (>80%), that is, tumor areas with increased thymidine-uptake and highest choline, both suggestive of increased tumor proliferation, and elevated microcirculation as demonstrated by DSC-, arterial spin-labeling-, and DCE-MRI. 23Na-MRI depicted the highest signal within necrotic tumor areas, but non-necrotic gliomas also showed a perfect agreement in more than 61%. 18F-fluorothymidine-PET, DSC-, and DCE-MRI, diffusion-weighted imaging as well as MR spectroscopic imaging correctly detected no glioma heterogeneity in all 15 histologically proven grade II gliomas but identified suspicious areas in all 3 nonenhancing grade III gliomas. CONCLUSION: Both imaging techniques that depict microcirculation and techniques that visualize proliferation identify similar target areas.


Subject(s)
Biopsy/methods , Brain Neoplasms/diagnosis , Glioma/diagnosis , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Choline/metabolism , Contrast Media , Dideoxynucleosides , Female , Fluorodeoxyglucose F18 , Gadolinium DTPA , Glioma/diagnostic imaging , Glioma/metabolism , Glioma/pathology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Spectroscopy/methods , Male , Microcirculation , Middle Aged , Neoplasm Staging , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/diagnostic imaging , Radiopharmaceuticals , Spin Labels , Stereotaxic Techniques
20.
Glia ; 57(15): 1630-47, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19373938

ABSTRACT

Astrocytes play many pivotal roles in the adult brain, including their reaction to injury. A hallmark of astrocytes is the contact of their endfeet with the basement membrane surrounding blood vessels, but still relatively little is known about the signaling mediated at the contact site. Here, we examine the role of beta1-integrin at this interface by its conditional deletion using different Cre lines. Thereby, the protein was reduced only at postnatal stages either in both glia and neurons or specifically only in neurons. Strikingly, only the former resulted in reactive gliosis, with the hallmarks of reactive astrocytes comprising astrocyte hypertrophy and up-regulation of the intermediate filaments GFAP and vimentin as well as pericellular components, such as Tenascin-C and the DSD-1 proteoglycan. In addition, we also observed to a certain degree a non-cell autonomous activation of microglial cells after conditional beta1-integrin deletion. However, these reactive astrocytes did not divide, suggesting that the loss of beta1-integrin-mediated signaling is not sufficient to elicit proliferation of these cells as observed after brain injury. Interestingly, this partial reactive gliosis appeared in the absence of cell death and blood brain barrier disturbances. As these effects did not appear after neuron-specific deletion of beta1-integrin, we conclude that beta1-integrin-mediated signaling in astrocytes is required to promote their acquisition of a mature, nonreactive state. Alterations in beta1-integrin-mediated signaling may hence be implicated in eliciting specific aspects of reactive gliosis after injury.


Subject(s)
Astrocytes/physiology , Gene Expression Regulation/genetics , Gliosis/genetics , Integrin beta1/genetics , Animals , Aquaporin 4/metabolism , Astrocytes/pathology , Astrocytes/ultrastructure , Basement Membrane/metabolism , Basement Membrane/ultrastructure , Basic Helix-Loop-Helix Transcription Factors/genetics , Blood-Brain Barrier/physiopathology , Bromodeoxyuridine/metabolism , Cell Death/genetics , Dystrophin-Associated Proteins/metabolism , Fibronectins/metabolism , Glial Fibrillary Acidic Protein , Laminin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission/methods , Nerve Tissue Proteins/genetics , Prosencephalon/pathology
SELECTION OF CITATIONS
SEARCH DETAIL