Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38244540

ABSTRACT

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Subject(s)
Carcinoma, Neuroendocrine , Lung Neoplasms , Small Cell Lung Carcinoma , Male , Humans , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Membrane Glycoproteins
2.
Commun Biol ; 7(1): 108, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238517

ABSTRACT

Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Androgen Antagonists , Prostate/pathology , Hydrolases , Microtubule-Associated Proteins , Enhancer of Zeste Homolog 2 Protein/genetics
3.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37801613

ABSTRACT

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Subject(s)
Prostate , Prostatic Neoplasms , Protein Kinases , Humans , Male , Cell Line, Tumor , Cell Proliferation , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Kinases/metabolism , Signal Transduction
4.
Cell Rep ; 42(10): 113221, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815914

ABSTRACT

Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Androgens/metabolism , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Signal Transduction
5.
Cell Rep ; 42(8): 112937, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37552603

ABSTRACT

Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.


Subject(s)
Neoplasm Recurrence, Local , Prostatic Neoplasms , Humans , Male , Neoplasm Recurrence, Local/drug therapy , Prostatic Neoplasms/genetics , Signal Transduction , Transcription Factors , Androgen Receptor Antagonists/therapeutic use , Receptors, Androgen/metabolism , Cell Line, Tumor , Basic Helix-Loop-Helix Transcription Factors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics
6.
Cancer Discov ; 13(8): 1771-1788, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37470668

ABSTRACT

Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE: Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.


Subject(s)
Cell Plasticity , Neoplasms , Humans , Cell Lineage/genetics , Cell Plasticity/genetics , Neoplasms/genetics , Epigenesis, Genetic , Tumor Microenvironment/genetics
7.
Mol Cancer Ther ; 22(10): 1166-1181, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37486978

ABSTRACT

Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.


Subject(s)
Peptoids , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Animals , Mice , Humans , Receptors, Androgen/metabolism , Peptoids/pharmacology , Ligands , Ethisterone/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/pathology , Nitriles/pharmacology , Androgen Receptor Antagonists/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
8.
Endocrinology ; 164(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36718085

ABSTRACT

Despite the development of effective targeted therapies and a significant understanding of carcinogenesis and cancer progression, treatment resistance is a major obstacle in achieving durable long-term control in many types of cancers. Emerging evidence supports that nongenetic mechanisms could play an underappreciated role in therapy resistance. These mechanisms include phenotypic plasticity, which is recognized as a hallmark of cancer and translates to epigenetic and transcriptional control of gene expression. Alterations in the expression and activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2) support prostate cancer lineage plasticity and progression. EZH2 expression and activity is elevated in castration-resistant prostate cancer treated with androgen receptor pathway inhibitors and in treatment-resistant prostate cancer. Moreover, 17 known residues of EZH2 are phosphorylated on by multiple kinases that modulate its activity, localization, stability, and polycomb repressive complex (PRC2) assembly. In this review, we explore the contribution of EZH2 phosphorylation in regulating canonical PRC2 in a methylation-dependent manner as an epigenetic repressor and in a noncanonical manner independent of PRC2 as a transcription activator. Apart from the contribution of EZH2 phosphorylation at serine 21, threonine 350, and threonine 311 in prostate cancer progression and treatment resistance, we discuss how other EZH2 phosphorylated residues with unknown functions could contribute to prostate cancer based on their upstream regulators and potential therapeutic utility.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Prostatic Neoplasms , Male , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Polycomb Repressive Complex 2/genetics , Prostatic Neoplasms/metabolism , Methylation , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic
9.
NAR Cancer ; 4(4): zcac034, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36348939

ABSTRACT

Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.

10.
Cancer Res ; 82(21): 3888-3902, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36251389

ABSTRACT

Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.


Subject(s)
5-Methylcytosine , Prostatic Neoplasms , Male , Humans , Prostate , Biopsy
11.
Cancer Discov ; 12(9): 2074-2097, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35754340

ABSTRACT

In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs, and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multiomics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 from inactive chromatin sites toward active cis-regulatory elements that dictate prosurvival signals. Notably, treatment-induced FOXA1 sites were enriched for the circadian clock component ARNTL. Posttreatment ARNTL levels were associated with patients' clinical outcomes, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy and revealed an acquired dependency on the circadian regulator ARNTL, a novel candidate therapeutic target. SIGNIFICANCE: Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward prosurvival signaling and uncovered the circadian regulator ARNTL as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development. See related commentary by Zhang et al., p. 2017. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Androgens , Prostatic Neoplasms, Castration-Resistant , ARNTL Transcription Factors/genetics , Androgens/pharmacology , Androgens/therapeutic use , Cell Line, Tumor , Circadian Rhythm , Drug Resistance, Neoplasm/genetics , Epigenomics , Humans , Male , Nitriles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics
12.
Nat Commun ; 13(1): 2282, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477723

ABSTRACT

Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs.


Subject(s)
Chromatin , Prostatic Neoplasms , Androgen Receptor Antagonists , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Humans , Male , Neurons/metabolism , Prostatic Neoplasms/pathology , Stem Cells/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Mol Cancer Res ; 20(6): 841-853, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35302608

ABSTRACT

Inhibiting androgen signaling using androgen signaling inhibitors (ASI) remains the primary treatment for castrate-resistant prostate cancer. Acquired resistance to androgen receptor (AR)-targeted therapy represents a major impediment to durable clinical response. Understanding resistance mechanisms, including the role of AR expressed in other cell types within the tumor microenvironment, will extend the clinical benefit of AR-targeted therapy. Here, we show the ASI enzalutamide induces vascular catastrophe and promotes hypoxia and microenvironment adaptation. We characterize treatment-induced hypoxia, and subsequent induction of angiogenesis, as novel mechanisms of relapse to enzalutamide, highlighting the importance of two hypoxia-regulated cytokines in underpinning relapse. We confirmed AR expression in CD34+ vascular endothelium of biopsy tissue and human vascular endothelial cells (HVEC). Enzalutamide attenuated angiogenic tubule formation and induced cytotoxicity in HVECs in vitro, and rapidly induced sustained hypoxia in LNCaP xenografts. Subsequent reoxygenation, following prolonged enzalutamide treatment, was associated with increased tumor vessel density and accelerated tumor growth. Hypoxia increased AR expression and transcriptional activity in prostate cells in vitro. Coinhibition of IL8 and VEGF-A restored tumor response in the presence of enzalutamide, confirming the functional importance of their elevated expression in enzalutamide-resistant models. Moreover, coinhibition of IL8 and VEGF-A resulted in a durable, effective resolution of enzalutamide-sensitive prostate tumors. We conclude that concurrent inhibition of two hypoxia-induced factors, IL8 and VEGF-A, prolongs tumor sensitivity to enzalutamide in preclinical models and may delay the onset of enzalutamide resistance. IMPLICATIONS: Targeting hypoxia-induced signaling may extend the therapeutic benefit of enzalutamide, providing an improved treatment strategy for patients with resistant disease.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Endothelial Cells/metabolism , Humans , Hypoxia/drug therapy , Interleukin-8/genetics , Male , Neoplasm Recurrence, Local/drug therapy , Nitriles/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Tumor Microenvironment , Vascular Endothelial Growth Factor A/genetics
14.
J Biol Chem ; 298(2): 101556, 2022 02.
Article in English | MEDLINE | ID: mdl-34973338

ABSTRACT

Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching.


Subject(s)
Benzamides , Calcium-Calmodulin-Dependent Protein Kinases , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Benzamides/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Line, Tumor , Cell Lineage , Cell Plasticity , Drug Resistance, Neoplasm , Humans , Male , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
15.
Nat Commun ; 12(1): 7349, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934057

ABSTRACT

Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Cell Plasticity/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Long Noncoding/metabolism , Androgen Antagonists/therapeutic use , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Biomarkers, Tumor/metabolism , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/drug therapy , Cell Line, Tumor , Cell Lineage/genetics , Cell Nucleus/metabolism , Cell Proliferation/genetics , Cohort Studies , DNA Methylation/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Genome, Human , Histones/metabolism , Humans , Male , Neoplasm Grading , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Nitriles/pharmacology , Nitriles/therapeutic use , Organoids/metabolism , Organoids/pathology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Phylogeny , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Long Noncoding/genetics , Receptors, Androgen/metabolism , SOXB1 Transcription Factors/metabolism , Transcription, Genetic/drug effects
16.
Nat Commun ; 12(1): 6377, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737261

ABSTRACT

Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Neuroendocrine Cells/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptor, ErbB-2/metabolism , Receptors, Androgen/metabolism , Cell Line, Tumor , Humans , Male , Neoplasm Staging , Neuroendocrine Cells/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction , Transcriptional Activation
17.
J Biomed Sci ; 28(1): 68, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625072

ABSTRACT

BACKGROUND: NKX3.1, a prostate-specific tumor suppressor, is either genomically lost or its protein levels are severely downregulated, which are invariably associated with poor prognosis in prostate cancer (PCa). Nevertheless, a clear disconnect exists between its mRNA and protein levels, indicating that its post-translational regulation may be critical in maintaining its protein levels. Similarly, AURKA is vastly overexpressed in all stages of prostate cancer (PCa), including castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC), although its transcripts are only increased in ~ 15% of cases, hinting at additional mechanisms of deregulation. Thus, identifying the upstream regulators that control AURKA and NKX3.1's levels and/or their downstream effectors offer an alternative route to inhibit AURKA and upregulate NKX3.1 in highly fatal CRPC and NEPC. AURKA and NKX3.1 have not linked to each other in any study to date. METHODS: A chemical genetic screen revealed NKX3.1 as a direct target of AURKA. AURKA-NKX3.1 cross-talk was analyzed using several biochemical techniques in CRPC and NEPC cells. RESULTS: We uncovered a reciprocal loop between AURKA and NKX3.1 in CRPC and NEPC cells. We observed that AURKA-mediated NKX3.1 downregulation is a major mechanism that drives CRPC pathogenesis and NEPC differentiation. AURKA phosphorylates NKX3.1 at three sites, which degrades it, but AURKA does not regulate NKX3.1 mRNA levels. NKX3.1 degradation drives highly aggressive oncogenic phenotypes in cells. NKX3.1 also degrades AURKA in a feedback loop. NKX3.1-AURKA loop thus upregulates AKT, ARv7 and Androgen Receptor (AR)-signaling in tandem promoting highly malignant phenotypes. Just as importantly, we observed that NKX3.1 overexpression fully abolished synaptophysin and enolase expression in NEPC cells, uncovering a strong negative relationship between NKX3.1 and neuroendocrine phenotypes, which was further confirmed be measuring neurite outgrowth. While WT-NKX3.1 inhibited neuronal differentiation, 3A-NKX3.1 expression obliterated it. CONCLUSIONS: NKX3.1 loss could be a major mechanism causing AURKA upregulation in CRPC and NEPC and vice versa. NKX3.1 genomic loss requires gene therapy, nonetheless, targeting AURKA provides a powerful tool to maintain NKX3.1 levels. Conversely, when NKX3.1 upregulation strategy using small molecules comes to fruition, AURKA inhibition should work synergistically due to the reciprocal loop in these highly aggressive incurable diseases.


Subject(s)
Aurora Kinase A/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Prostatic Neoplasms/genetics , Transcription Factors/genetics , Aurora Kinase A/metabolism , Castration , Homeodomain Proteins/metabolism , Humans , Male , Transcription Factors/metabolism
18.
Nat Cell Biol ; 23(9): 1023-1034, 2021 09.
Article in English | MEDLINE | ID: mdl-34489572

ABSTRACT

Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Regulatory Networks/physiology , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Signal Transduction/physiology
19.
ACS Chem Biol ; 16(11): 2103-2108, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34506104

ABSTRACT

All current clinically approved androgen deprivation therapies for prostate cancer target the C-terminal ligand-binding domain of the androgen receptor (AR). However, the main transactivation function of the receptor is localized at the AR N-terminal domain (NTD). Targeting the AR NTD directly is a challenge because of its intrinsically disordered structure and the lack of pockets for drugs to bind. Here, we have taken an alternative approach using the cochaperone BAG1L, which interacts with the NTD, to develop a novel AR inhibitor. We describe the identification of 2-(4-fluorophenyl)-5-(trifluoromethyl)-1,3-benzothiazole (A4B17), a small molecule that inhibits BAG1L-AR NTD interaction, attenuates BAG1L-mediated AR NTD activity, downregulates AR target gene expression, and inhibits proliferation of AR-positive prostate cancer cells. This compound represents a prototype of AR antagonists that could be key in the development of future prostate cancer therapeutics.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Humans , Male , Prostatic Neoplasms/metabolism , Protein Binding/drug effects , Protein Domains , Receptors, Androgen/chemistry , Transcription Factors/metabolism
20.
Endocr Relat Cancer ; 28(8): T11-T18, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34128829

ABSTRACT

The first case of prostate cancer was identified by histological examination by Adams, a surgeon at The London Hospital, in 1853. In his report, Adams noted that the condition was 'a very rare disease'. Now, over 150 years later, with increased life expectancy and screening, prostate cancer has become one of the most common cancers in men. In the United States alone, nearly 200,000 men are diagnosed with prostate cancer annually and about 33,000 succumb to their disease. Fifty years ago, men were typically diagnosed with prostate cancer in their seventies with disease that had metastasized to the bone and/or soft tissue. Diagnosis at such an advanced stage was a death sentence, with patients dying within 2 years. The pioneering work of Charles Huggins in the 1940s found that metastatic prostate cancer responds to androgen deprivation therapy (ADT), ushering in the rational use of hormone therapies that have irrevocably changed the course of prostate cancer disease management. Medical castration was the first effective systemic targeted therapy for any cancer and, to this day, androgen ablation remains the mainstay of prostate cancer therapy.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists , Androgens , Humans , Male , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...