Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 44(3): 480-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26313953

ABSTRACT

Adaptation of parasitoids to their phytophagous host is often mediated by environmental conditions and by the food plant of the phytophagous host. Therefore, the host food plant can indirectly affect the survival and fitness of parasitoids that also attack quiescent host stages, such as eggs, in which the resources available to the immature parasitoid stages are limited. Our aim was to investigate how two egg parasitoid species of the pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermüller), respond to variations in egg traits at the extremes of a west-to-east geographic gradient in northern Italy. We considered one specialist [Baryscapus servadeii (Domenichini)] and one generalist [Ooencyrtus pityocampae (Mercet)] parasitoid, which reproduce mainly by thelytokous parthenogenesis and are common throughout the whole range of this pest. The size and shell structure of the pine processionary moth eggs were studied under light microscopy and tested experimentally under controlled conditions. We can conclude that 1) the pine processionary moth egg shell thickness is inversely proportional to the parasitism performance; 2) the larger eggs from the pine processionary moth eastern population produce parasitoid females of a larger size, which have greater realized fecundity; 3) the generalist parasitoid performs successfully with either the "home" or "away" (i.e., from both extremes of the geographic gradient) pine processionary moth eggs, which is not the case for the specialist parasitoid. The implications of these responses in the regulation of phytophagous populations are numerous and should be considered in population dynamics studies and pest management programs.


Subject(s)
Adaptation, Physiological , Moths/physiology , Moths/parasitology , Ovum/ultrastructure , Wasps/physiology , Analysis of Variance , Animals , Body Size , Ecosystem , Female , Fertility , Italy , Ovum/parasitology , Reproduction/physiology
2.
Integr Zool ; 9(3): 320-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24952969

ABSTRACT

Larvae of the processionary moths of the Palaearctic region bear urticating setae that are released against vertebrate predators, especially insectivorous birds. A few species are pests of forest and urban trees and, consequently, may threaten human and animal health during outbreaks, causing dermatitis, conjunctivitis and respiratory distress. Although some studies provide detailed information about the setae, particularly those of the pine processionary moth Thaumetopoea pityocampa, there is little knowledge on the morphological traits of the setae and their release by the larvae. In the present study we identify major traits of the setae of 3 species of processionary moth, T. pityocampa, T. pinivora and T. processionea, which are potentially helpful in the understanding of setae dynamics in the environment: (i) diameter and length of setae and (ii) analysis of dynamical properties of the setae in the airborne state. Setae are highly variable in size, with bimodal distribution in T. pityocampa and T. pinivora; in these 2 species, short and long setae are interspersed within the integument fields where they occur. The difference in the seta size has important consequences in dispersion, as smaller setae can spread 5 times further than their bigger counterparts. This information is relevant for a full understanding of the defensive importance of larval setae against natural enemies of the processionary moths, as well for elucidating the importance of the processionary setae as air pollutants, both close to the infested trees and at longer distances.


Subject(s)
Air Pollutants/analysis , Moths/anatomy & histology , Animals , Environmental Monitoring , Italy , Larva/anatomy & histology , Moths/growth & development , Sensilla/anatomy & histology , Species Specificity
3.
Contact Dermatitis ; 67(6): 367-74, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22708991

ABSTRACT

BACKGROUND: Pine processionary larvae produce urticating hairs (setae) that serve for protection against predators. Setae induce cutaneous reactions in animals and humans. The presence of toxic or allergic mechanisms is a matter of debate. OBJECTIVES: To detect the presence of allergens in setae and to characterize them. MATERIALS AND METHODS: Setae extracts were characterized by gel staining and immunoblot, with sera from patients with immediate reactions and positive prick test reactions, as well as a rabbit antiserum raised against setae. Setae proteins were fractionated by high-performance liquid chromatography. The most relevant allergen was analysed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), and its sequence was deduced from an expressed sequence tag bank. Results. Setae contained at least seven different allergens. The most intense detection corresponded to a protein of MW ~ 14,000 that was similar to thaumetopoein, a previously described protein with mast cell-degranulating properties. MALDI-MS-based de novo sequencing provided a partial amino acid sequence different from that of the previously described allergen Tha p 1, and it was named Tha p 2. This allergen was detected in 61% of patients, and it is therefore a new major caterpillar allergen. CONCLUSIONS: Penetration of the setae from the pine processionary caterpillar delivers their allergenic content in addition to causing mechanical or toxic injury.


Subject(s)
Allergens/adverse effects , Allergens/immunology , Dermatitis, Allergic Contact/immunology , Lepidoptera/immunology , Moths/immunology , Animals , Antibodies, Antinuclear/immunology , Dermatitis, Allergic Contact/diagnosis , Electrophoresis, Polyacrylamide Gel , Humans , Patch Tests , Sensitivity and Specificity , Spain
4.
Ecology ; 89(5): 1388-98, 2008 May.
Article in English | MEDLINE | ID: mdl-18543631

ABSTRACT

Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore.


Subject(s)
Adaptation, Physiological/physiology , Ecosystem , Feeding Behavior/physiology , Moths/physiology , Pinus/physiology , Analysis of Variance , Animals , Demography , Female , Larva/physiology , Moths/parasitology , Ovum/parasitology , Plant Leaves/physiology , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...