Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transfus Clin Biol ; 29(1): 31-36, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34411748

ABSTRACT

OBJECTIVES: The detection of SARS-CoV-2 RNA in blood and platelet concentrates from asymptomatic donors, and the detection of viral particles on the surface and inside platelets during in vitro experiments, raised concerns over the potential risk for transfusion-transmitted-infection (TTI). The objective of this study was to assess the efficacy of the amotosalen/UVA pathogen reduction technology for SARS-CoV-2 in human platelet concentrates to mitigate such potential risk. MATERIAL AND METHODS: Five apheresis platelet units in 100% plasma were spiked with a clinical SARS-CoV-2 isolate followed by treatment with amotosalen/UVA (INTERCEPT Blood System), pre- and posttreatment samples were collected as well as untreated positive and negative controls. The infectious viral titer was assessed by plaque assay and the genomic titer by quantitative RT-PCR. To exclude the presence of infectious particles post-pathogen reduction treatment below the limit of detection, three consecutive rounds of passaging on permissive cell lines were conducted. RESULTS: SARS-CoV-2 in platelet concentrates was inactivated with amotosalen/UVA below the limit of detection with a mean log reduction of>3.31±0.23. During three consecutive rounds of passaging, no viral replication was detected. Pathogen reduction treatment also inhibited nucleic acid detection with a log reduction of>4.46±0.51 PFU equivalents. CONCLUSION: SARS-CoV-2 was efficiently inactivated in platelet concentrates by amotosalen/UVA treatment. These results are in line with previous inactivation data for SARS-CoV-2 in plasma as well as MERS-CoV and SARS-CoV-1 in platelets and plasma, demonstrating efficient inactivation of human coronaviruses.


Subject(s)
Blood Component Removal , COVID-19 , Furocoumarins , Blood Platelets , Furocoumarins/pharmacology , Humans , RNA, Viral , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation
2.
Int J Antimicrob Agents ; 56(4): 106115, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721600

ABSTRACT

Due to limited therapeutic options, combination therapy has been used empirically to treat carbapenem-resistant Acinetobacter baumannii (CRAB). Polymyxin-based combinations have been widely studied and used in the clinical setting. However, the use of polymyxins is often limited due to nephrotoxicity and neurotoxicity. This study aimed to evaluate the activity of non-polymyxin-based combinations relative to polymyxin-based combinations and to identify potential synergistic and bactericidal two-drug non-polymyxin-based combinations against CRAB. In vitro activity of 14 two-drug combinations against 50 A. baumannii isolates was evaluated using the checkerboard method. Subsequently, the two best-performing non-polymyxin-based combinations from the checkerboard assay were explored in static time-kill experiments. Concentrations of antibiotics corresponding to the fractional inhibitory concentrations (FIC) and the highest serum concentration achievable clinically were tested. The most synergistic combinations were fosfomycin/sulbactam (synergistic against 37/50 isolates; 74%), followed by meropenem/sulbactam (synergistic against 28/50 isolates; 56%). No antagonism was observed for any combination. Both fosfomycin/sulbactam and meropenem/sulbactam combinations exhibited bactericidal and synergistic activity against both isolates at the highest clinically achievable concentrations in the time-kill experiments. The meropenem/sulbactam combination displayed synergistic and bactericidal activity against one of two strains at concentrations equal to the FIC. Non-polymyxin-based combinations such as fosfomycin/sulbactam and meropenem/sulbactam may have a role in the treatment of CRAB. Further in vivo and clinical studies are required to scrutinise these activities further.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Fosfomycin/therapeutic use , Meropenem/therapeutic use , Sulbactam/therapeutic use , Acinetobacter baumannii/isolation & purification , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/physiology , Drug Synergism , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Polymyxins/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...